200 lines
7.6 KiB
Python
Raw Normal View History

2025-04-17 11:03:05 +08:00
from . import schemas, models, crud
from apps.business.project import schemas as proj_schemas, models as proj_models, crud as proj_crud
from utils import os_utils as os
from application.settings import *
from utils.websocket_server import room_manager
import yaml
import asyncio
import subprocess
from typing import List
from redis.asyncio import Redis
from sqlalchemy.ext.asyncio import AsyncSession
async def before_train(proj_info: proj_models.ProjectInfo, db: AsyncSession):
"""
yolov5执行训练任务
:param proj_info: 项目信息
:param db: 数据库session
:return:
"""
proj_dal = proj_crud.ProjectInfoDal(db)
img_dal = proj_crud.ProjectImageDal(db)
label_dal = proj_crud.ProjectLabelDal(db)
# 先查询两个图片列表
project_images_train = img_dal.get_data(
v_where=[proj_models.ProjectImage.project_id == proj_info.id, proj_models.ProjectImage.img_type == 'train'])
project_images_val = img_dal.get_data(
v_where=[proj_models.ProjectImage.project_id == proj_info.id, proj_models.ProjectImage.img_type == 'val'])
# 得到训练版本
version_path = 'v' + str(proj_info.train_version + 1)
# 创建训练的根目录
train_path = os.create_folder(datasets_url, proj_info.project_no, version_path)
# 查询项目所属标签,返回两个 idname一一对应的数组
label_id_list, label_name_list = label_dal.get_label_for_train(proj_info.id)
# 创建图片的的两个文件夹
img_path_train = os.create_folder(train_path, 'images', 'train')
img_path_val = os.create_folder(train_path, 'images', 'val')
# 创建标签的两个文件夹
label_path_train = os.create_folder(train_path, 'labels', 'train')
label_path_val = os.create_folder(train_path, 'labels', 'val')
# 在根目录下创建yaml文件
yaml_file = os.file_path(train_path, proj_info.project_no + '.yaml')
yaml_data = {
'path': train_path,
'train': 'images/train',
'val': 'images/val',
'test': None,
'names': {i: name for i, name in enumerate(label_name_list)}
}
with open(yaml_file, 'w', encoding='utf-8') as file:
yaml.dump(yaml_data, file, allow_unicode=True, default_flow_style=False)
# 开始循环复制图片和生成label.txt
# 先操作train
operate_img_label(project_images_train, img_path_train, label_path_train, db, label_id_list)
# 再操作val
operate_img_label(project_images_val, img_path_val, label_path_val, db, label_id_list)
# 开始执行异步训练
data = yaml_file
project = os.file_path(runs_url, proj_info.project_no)
name = version_path
return data, project, name
async def operate_img_label(
img_list: List[proj_models.ProjectImgLabel],
img_path: str,
label_path: str,
db: AsyncSession,
label_id_list: []):
"""
生成图片和标签内容
:param label_id_list:
:param db: 数据库session
:param img_list:
:param img_path:
:param label_path:
:return:
"""
for i in range(len(img_list)):
image = img_list[i]
# 先复制图片,并把图片改名,不改后缀
file_name = 'image' + str(i)
os.copy_and_rename_file(image.image_url, img_path, file_name)
# 查询这张图片的label信息然后生成这张照片的txt文件
img_label_list = await proj_crud.ProjectImgLabelDal(db).get_img_label_list(image.id)
label_txt_path = os.file_path(label_path, file_name + '.txt')
with open(label_txt_path, 'w', encoding='utf-8') as file:
for image_label in img_label_list:
index = label_id_list.index(image_label.label_id)
file.write(str(index) + ' ' + image_label.mark_center_x + ' '
+ image_label.mark_center_y + ' '
+ image_label.mark_width + ' '
+ image_label.mark_height + '\n')
async def run_event_loop(
data: str,
project: str,
name: str,
train_in: schemas.ProjectTrainIn,
project_id: int,
db: AsyncSession):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# 运行异步函数
loop.run_until_complete(run_commend(data, project, name, train_in.epochs, train_in.patience, train_in.weights_id,
project_id, db))
# 可选: 关闭循环
loop.close()
async def run_commend(
data: str,
project: str,
name: str,
epochs: int,
patience: int,
weights: str,
project_id: int,
db: AsyncSession,
rd: Redis):
"""
执行训练
:param data: 训练数据集
:param project: 训练结果的项目目录
:param name: 实验名称
:param epochs: 训练轮数
:param patience: 早停耐心值
:param weights: 权重文件
:param project_id: 项目id
:param db: 数据库session
:param rd: redis连接
:return:
"""
yolo_path = os.file_path(yolo_url, 'train.py')
room = 'train_' + str(project_id)
await room_manager.send_to_room(room, f"AiCheckV2.0: 模型训练开始,请稍等。。。\n")
commend = ["python", '-u', yolo_path, "--data=" + data, "--project=" + project, "--name=" + name,
"--epochs=" + str(epochs), "--batch-size=8", "--exist-ok", "--patience=" + str(patience)]
# 增加权重文件,在之前训练的基础上重新巡逻
if weights != '' and weights is not None:
train_info = await crud.ProjectTrainDal(db).get_data(data_id=int(weights))
if train_info is not None:
commend.append("--weights=" + train_info.best_pt)
is_gpu = rd.get('is_gpu')
# 判断是否存在cuda版本
if is_gpu == 'True':
commend.append("--device=0")
# 启动子进程
with subprocess.Popen(
commend,
bufsize=1, # bufsize=0时为不缓存bufsize=1时按行缓存bufsize为其他正整数时为按照近似该正整数的字节数缓存
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, # 这里可以显示yolov5训练过程中出现的进度条等信息
text=True, # 缓存内容为文本,避免后续编码显示问题
encoding='utf-8',
) as process:
while process.poll() is None:
line = process.stdout.readline()
process.stdout.flush() # 刷新缓存,防止缓存过多造成卡死
if line != '\n' and '0%' not in line:
await room_manager.send_to_room(room, line + '\n')
# 等待进程结束并获取返回码
return_code = process.wait()
if return_code != 0:
await room_manager.send_to_room(room, 'error')
else:
await room_manager.send_to_room(room, 'success')
# 然后保存版本训练信息
train = models.ProjectTrain()
train.project_id = project_id
train.train_version = name
train_url = os.file_path(project, name)
train.train_url = train_url
train.train_data = data
bast_pt_path = os.file_path(train_url, 'weights', 'best.pt')
last_pt_path = os.file_path(train_url, 'weights', 'last.pt')
train.best_pt = bast_pt_path
train.last_pt = last_pt_path
if weights is not None and weights != '':
train.weights_id = weights
train.weights_name = train_info.train_version
train.patience = patience
train.epochs = epochs
await crud.ProjectTrainDal(db).create_data(data=train)