74 lines
1.9 KiB
Python
74 lines
1.9 KiB
Python
|
# vim: expandtab:ts=4:sw=4
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
|
||
|
|
||
|
def non_max_suppression(boxes, max_bbox_overlap, scores=None):
|
||
|
"""Suppress overlapping detections.
|
||
|
|
||
|
Original code from [1]_ has been adapted to include confidence score.
|
||
|
|
||
|
.. [1] http://www.pyimagesearch.com/2015/02/16/
|
||
|
faster-non-maximum-suppression-python/
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> boxes = [d.roi for d in detections]
|
||
|
>>> scores = [d.confidence for d in detections]
|
||
|
>>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
|
||
|
>>> detections = [detections[i] for i in indices]
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
boxes : ndarray
|
||
|
Array of ROIs (x, y, width, height).
|
||
|
max_bbox_overlap : float
|
||
|
ROIs that overlap more than this values are suppressed.
|
||
|
scores : Optional[array_like]
|
||
|
Detector confidence score.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
List[int]
|
||
|
Returns indices of detections that have survived non-maxima suppression.
|
||
|
|
||
|
"""
|
||
|
if len(boxes) == 0:
|
||
|
return []
|
||
|
|
||
|
boxes = boxes.astype(np.float32)
|
||
|
pick = []
|
||
|
|
||
|
x1 = boxes[:, 0]
|
||
|
y1 = boxes[:, 1]
|
||
|
x2 = boxes[:, 2] + boxes[:, 0]
|
||
|
y2 = boxes[:, 3] + boxes[:, 1]
|
||
|
|
||
|
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||
|
if scores is not None:
|
||
|
idxs = np.argsort(scores)
|
||
|
else:
|
||
|
idxs = np.argsort(y2)
|
||
|
|
||
|
while len(idxs) > 0:
|
||
|
last = len(idxs) - 1
|
||
|
i = idxs[last]
|
||
|
pick.append(i)
|
||
|
|
||
|
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||
|
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||
|
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||
|
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||
|
|
||
|
w = np.maximum(0, xx2 - xx1 + 1)
|
||
|
h = np.maximum(0, yy2 - yy1 + 1)
|
||
|
|
||
|
overlap = (w * h) / (area[idxs[:last]] + area[idxs[last]] - w * h)
|
||
|
|
||
|
idxs = np.delete(
|
||
|
idxs, np.concatenate(
|
||
|
([last], np.where(overlap > max_bbox_overlap)[0])))
|
||
|
|
||
|
return pick
|