import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): def __init__(self, c_in, c_out, is_downsample=False): super(BasicBlock, self).__init__() self.is_downsample = is_downsample if is_downsample: self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False) else: self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(c_out) self.relu = nn.ReLU(True) self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(c_out) if is_downsample: self.downsample = nn.Sequential( nn.Conv2d(c_in, c_out, 1, stride=2, bias=False), nn.BatchNorm2d(c_out) ) elif c_in != c_out: self.downsample = nn.Sequential( nn.Conv2d(c_in, c_out, 1, stride=1, bias=False), nn.BatchNorm2d(c_out) ) self.is_downsample = True def forward(self, x): y = self.conv1(x) y = self.bn1(y) y = self.relu(y) y = self.conv2(y) y = self.bn2(y) if self.is_downsample: x = self.downsample(x) return F.relu(x.add(y), True) def make_layers(c_in, c_out, repeat_times, is_downsample=False): blocks = [] for i in range(repeat_times): if i == 0: blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ] else: blocks += [BasicBlock(c_out, c_out), ] return nn.Sequential(*blocks) class Net(nn.Module): def __init__(self, num_classes=751, reid=False): super(Net, self).__init__() # 3 128 64 self.conv = nn.Sequential( nn.Conv2d(3, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), # nn.Conv2d(32,32,3,stride=1,padding=1), # nn.BatchNorm2d(32), # nn.ReLU(inplace=True), nn.MaxPool2d(3, 2, padding=1), ) # 32 64 32 self.layer1 = make_layers(64, 64, 2, False) # 32 64 32 self.layer2 = make_layers(64, 128, 2, True) # 64 32 16 self.layer3 = make_layers(128, 256, 2, True) # 128 16 8 self.layer4 = make_layers(256, 512, 2, True) # 256 8 4 self.avgpool = nn.AdaptiveAvgPool2d(1) # 256 1 1 self.reid = reid self.classifier = nn.Sequential( nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(256, num_classes), ) def forward(self, x): x = self.conv(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) # B x 128 if self.reid: x = x.div(x.norm(p=2, dim=1, keepdim=True)) return x # classifier x = self.classifier(x) return x if __name__ == '__main__': net = Net() x = torch.randn(4, 3, 128, 64) y = net(x)