import numpy as np import torch from .deep.feature_extractor import Extractor, FastReIDExtractor from .sort.nn_matching import NearestNeighborDistanceMetric from .sort.preprocessing import non_max_suppression from .sort.detection import Detection from .sort.tracker import Tracker __all__ = ['DeepSort'] class DeepSort(object): def __init__(self, model_path, model_config=None, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True): self.min_confidence = min_confidence self.nms_max_overlap = nms_max_overlap if model_config is None: self.extractor = Extractor(model_path, use_cuda=use_cuda) else: self.extractor = FastReIDExtractor(model_config, model_path, use_cuda=use_cuda) max_cosine_distance = max_dist metric = NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) self.tracker = Tracker(metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init) def update(self, bbox_xywh, confidences, classes, ori_img, masks=None): self.height, self.width = ori_img.shape[:2] # generate detections features = self._get_features(bbox_xywh, ori_img) bbox_tlwh = self._xywh_to_tlwh(bbox_xywh) detections = [Detection(bbox_tlwh[i], conf, label, features[i], None if masks is None else masks[i]) for i, (conf, label) in enumerate(zip(confidences, classes)) if conf > self.min_confidence] # run on non-maximum supression boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = non_max_suppression(boxes, self.nms_max_overlap, scores) detections = [detections[i] for i in indices] # update tracker self.tracker.predict() self.tracker.update(detections) # output bbox identities outputs = [] mask_outputs = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue box = track.to_tlwh() x1, y1, x2, y2 = self._tlwh_to_xyxy(box) track_id = track.track_id track_cls = track.cls outputs.append(np.array([x1, y1, x2, y2, track_cls, track_id], dtype=np.int32)) if track.mask is not None: mask_outputs.append(track.mask) if len(outputs) > 0: outputs = np.stack(outputs, axis=0) return outputs, mask_outputs """ TODO: Convert bbox from xc_yc_w_h to xtl_ytl_w_h Thanks JieChen91@github.com for reporting this bug! """ @staticmethod def _xywh_to_tlwh(bbox_xywh): if isinstance(bbox_xywh, np.ndarray): bbox_tlwh = bbox_xywh.copy() elif isinstance(bbox_xywh, torch.Tensor): bbox_tlwh = bbox_xywh.clone() bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2. bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2. return bbox_tlwh def _xywh_to_xyxy(self, bbox_xywh): x, y, w, h = bbox_xywh x1 = max(int(x - w / 2), 0) x2 = min(int(x + w / 2), self.width - 1) y1 = max(int(y - h / 2), 0) y2 = min(int(y + h / 2), self.height - 1) return x1, y1, x2, y2 def _tlwh_to_xyxy(self, bbox_tlwh): """ TODO: Convert bbox from xtl_ytl_w_h to xc_yc_w_h Thanks JieChen91@github.com for reporting this bug! """ x, y, w, h = bbox_tlwh x1 = max(int(x), 0) x2 = min(int(x + w), self.width - 1) y1 = max(int(y), 0) y2 = min(int(y + h), self.height - 1) return x1, y1, x2, y2 @staticmethod def _xyxy_to_tlwh(bbox_xyxy): x1, y1, x2, y2 = bbox_xyxy t = x1 l = y1 w = int(x2 - x1) h = int(y2 - y1) return t, l, w, h def _get_features(self, bbox_xywh, ori_img): im_crops = [] for box in bbox_xywh: x1, y1, x2, y2 = self._xywh_to_xyxy(box) im = ori_img[y1:y2, x1:x2] im_crops.append(im) if im_crops: features = self.extractor(im_crops) else: features = np.array([]) return features