122 lines
4.3 KiB
Python
122 lines
4.3 KiB
Python
import numpy as np
|
|
import torch
|
|
|
|
from .deep.feature_extractor import Extractor, FastReIDExtractor
|
|
from .sort.nn_matching import NearestNeighborDistanceMetric
|
|
from .sort.preprocessing import non_max_suppression
|
|
from .sort.detection import Detection
|
|
from .sort.tracker import Tracker
|
|
|
|
__all__ = ['DeepSort']
|
|
|
|
|
|
class DeepSort(object):
|
|
def __init__(self, model_path, model_config=None, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0,
|
|
max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True):
|
|
self.min_confidence = min_confidence
|
|
self.nms_max_overlap = nms_max_overlap
|
|
|
|
if model_config is None:
|
|
self.extractor = Extractor(model_path, use_cuda=use_cuda)
|
|
else:
|
|
self.extractor = FastReIDExtractor(model_config, model_path, use_cuda=use_cuda)
|
|
|
|
max_cosine_distance = max_dist
|
|
metric = NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
|
|
self.tracker = Tracker(metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
|
|
|
|
def update(self, bbox_xywh, confidences, classes, ori_img, masks=None):
|
|
self.height, self.width = ori_img.shape[:2]
|
|
# generate detections
|
|
features = self._get_features(bbox_xywh, ori_img)
|
|
bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
|
|
detections = [Detection(bbox_tlwh[i], conf, label, features[i], None if masks is None else masks[i])
|
|
for i, (conf, label) in enumerate(zip(confidences, classes))
|
|
if conf > self.min_confidence]
|
|
|
|
# run on non-maximum supression
|
|
boxes = np.array([d.tlwh for d in detections])
|
|
scores = np.array([d.confidence for d in detections])
|
|
indices = non_max_suppression(boxes, self.nms_max_overlap, scores)
|
|
detections = [detections[i] for i in indices]
|
|
|
|
# update tracker
|
|
self.tracker.predict()
|
|
self.tracker.update(detections)
|
|
|
|
# output bbox identities
|
|
outputs = []
|
|
mask_outputs = []
|
|
for track in self.tracker.tracks:
|
|
if not track.is_confirmed() or track.time_since_update > 1:
|
|
continue
|
|
box = track.to_tlwh()
|
|
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
|
|
track_id = track.track_id
|
|
track_cls = track.cls
|
|
outputs.append(np.array([x1, y1, x2, y2, track_cls, track_id], dtype=np.int32))
|
|
if track.mask is not None:
|
|
mask_outputs.append(track.mask)
|
|
if len(outputs) > 0:
|
|
outputs = np.stack(outputs, axis=0)
|
|
return outputs, mask_outputs
|
|
|
|
"""
|
|
TODO:
|
|
Convert bbox from xc_yc_w_h to xtl_ytl_w_h
|
|
Thanks JieChen91@github.com for reporting this bug!
|
|
"""
|
|
|
|
@staticmethod
|
|
def _xywh_to_tlwh(bbox_xywh):
|
|
if isinstance(bbox_xywh, np.ndarray):
|
|
bbox_tlwh = bbox_xywh.copy()
|
|
elif isinstance(bbox_xywh, torch.Tensor):
|
|
bbox_tlwh = bbox_xywh.clone()
|
|
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
|
|
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
|
|
return bbox_tlwh
|
|
|
|
def _xywh_to_xyxy(self, bbox_xywh):
|
|
x, y, w, h = bbox_xywh
|
|
x1 = max(int(x - w / 2), 0)
|
|
x2 = min(int(x + w / 2), self.width - 1)
|
|
y1 = max(int(y - h / 2), 0)
|
|
y2 = min(int(y + h / 2), self.height - 1)
|
|
return x1, y1, x2, y2
|
|
|
|
def _tlwh_to_xyxy(self, bbox_tlwh):
|
|
"""
|
|
TODO:
|
|
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
|
|
Thanks JieChen91@github.com for reporting this bug!
|
|
"""
|
|
x, y, w, h = bbox_tlwh
|
|
x1 = max(int(x), 0)
|
|
x2 = min(int(x + w), self.width - 1)
|
|
y1 = max(int(y), 0)
|
|
y2 = min(int(y + h), self.height - 1)
|
|
return x1, y1, x2, y2
|
|
|
|
@staticmethod
|
|
def _xyxy_to_tlwh(bbox_xyxy):
|
|
x1, y1, x2, y2 = bbox_xyxy
|
|
|
|
t = x1
|
|
l = y1
|
|
w = int(x2 - x1)
|
|
h = int(y2 - y1)
|
|
return t, l, w, h
|
|
|
|
def _get_features(self, bbox_xywh, ori_img):
|
|
im_crops = []
|
|
for box in bbox_xywh:
|
|
x1, y1, x2, y2 = self._xywh_to_xyxy(box)
|
|
im = ori_img[y1:y2, x1:x2]
|
|
im_crops.append(im)
|
|
if im_crops:
|
|
features = self.extractor(im_crops)
|
|
else:
|
|
features = np.array([])
|
|
return features
|