174 lines
5.9 KiB
Python
174 lines
5.9 KiB
Python
import torch.nn as nn
|
|
import torch
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3,
|
|
stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(out_channel)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(out_channel)
|
|
self.downsample = downsample
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_channel, out_channel, stride=1, downsample=None,
|
|
groups=1, width_per_group=64):
|
|
super(Bottleneck, self).__init__()
|
|
width = int(out_channel * (width_per_group / 64.)) * groups
|
|
|
|
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width, kernel_size=1,
|
|
stride=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(width)
|
|
self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, kernel_size=3,
|
|
stride=stride, padding=1, bias=False, groups=groups)
|
|
self.bn2 = nn.BatchNorm2d(width)
|
|
self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
|
|
kernel_size=1, stride=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
|
|
def __init__(self, block, blocks_num, reid=False, num_classes=1000, groups=1, width_per_group=64):
|
|
super(ResNet, self).__init__()
|
|
self.reid = reid
|
|
self.in_channel = 64
|
|
|
|
self.groups = groups
|
|
self.width_per_group = width_per_group
|
|
|
|
self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
|
|
padding=3, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(self.in_channel)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layers(block, 64, blocks_num[0])
|
|
self.layer2 = self._make_layers(block, 128, blocks_num[1], stride=2)
|
|
self.layer3 = self._make_layers(block, 256, blocks_num[2], stride=2)
|
|
# self.layer4 = self._make_layers(block, 512, blocks_num[3], stride=1)
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.fc = nn.Linear(256 * block.expansion, num_classes)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layers(self, block, channel, block_num, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.in_channel != channel * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(channel * block.expansion)
|
|
)
|
|
layers = []
|
|
layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride,
|
|
groups=self.groups, width_per_group=self.width_per_group))
|
|
self.in_channel = channel * block.expansion
|
|
|
|
for _ in range(1, block_num):
|
|
layers.append(block(self.in_channel, channel, groups=self.groups, width_per_group=self.width_per_group))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
# x = self.layer4(x)
|
|
x = self.avgpool(x)
|
|
x = torch.flatten(x, 1)
|
|
|
|
# B x 512
|
|
if self.reid:
|
|
x = x.div(x.norm(p=2, dim=1, keepdim=True))
|
|
return x
|
|
# classifier
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
def resnet18(num_classes=1000, reid=False):
|
|
# https://download.pytorch.org/models/resnet18-5c106cde.pth
|
|
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, reid=reid)
|
|
|
|
|
|
def resnet34(num_classes=1000, reid=False):
|
|
# https://download.pytorch.org/models/resnet34-333f7ec4.pth
|
|
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, reid=reid)
|
|
|
|
|
|
def resnet50(num_classes=1000, reid=False):
|
|
# https://download.pytorch.org/models/resnet50-19c8e357.pth
|
|
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, reid=reid)
|
|
|
|
|
|
def resnext50_32x4d(num_classes=1000, reid=False):
|
|
# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
|
|
groups = 32
|
|
width_per_group = 4
|
|
return ResNet(Bottleneck, [3, 4, 6, 3], reid=reid,
|
|
num_classes=num_classes, groups=groups, width_per_group=width_per_group)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
net = resnet18(reid=True)
|
|
x = torch.randn(4, 3, 128, 64)
|
|
y = net(x)
|