497 lines
23 KiB
JavaScript
497 lines
23 KiB
JavaScript
|
/**
|
||
|
* Cesium - https://github.com/AnalyticalGraphicsInc/cesium
|
||
|
*
|
||
|
* Copyright 2011-2017 Cesium Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* Columbus View (Pat. Pend.)
|
||
|
*
|
||
|
* Portions licensed separately.
|
||
|
* See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details.
|
||
|
*/
|
||
|
define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-fe4be337', './Cartesian2-85064f09', './BoundingSphere-775c5788', './IntersectionTests-397d9494', './Plane-8390418f', './EllipsoidRhumbLine-f161e674', './EllipsoidGeodesic-84507801'], function (exports, when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, IntersectionTests, Plane, EllipsoidRhumbLine, EllipsoidGeodesic) { 'use strict';
|
||
|
|
||
|
/**
|
||
|
* @private
|
||
|
*/
|
||
|
var PolylinePipeline = {};
|
||
|
|
||
|
PolylinePipeline.numberOfPoints = function(p0, p1, minDistance) {
|
||
|
var distance = Cartographic.Cartesian3.distance(p0, p1);
|
||
|
return Math.ceil(distance / minDistance);
|
||
|
};
|
||
|
|
||
|
PolylinePipeline.numberOfPointsRhumbLine = function(p0, p1, granularity) {
|
||
|
var radiansDistanceSquared = Math.pow((p0.longitude - p1.longitude), 2) + Math.pow((p0.latitude - p1.latitude), 2);
|
||
|
return Math.ceil(Math.sqrt(radiansDistanceSquared / (granularity * granularity)));
|
||
|
};
|
||
|
|
||
|
var cartoScratch = new Cartographic.Cartographic();
|
||
|
PolylinePipeline.extractHeights = function(positions, ellipsoid) {
|
||
|
var length = positions.length;
|
||
|
var heights = new Array(length);
|
||
|
for (var i = 0; i < length; i++) {
|
||
|
var p = positions[i];
|
||
|
heights[i] = ellipsoid.cartesianToCartographic(p, cartoScratch).height;
|
||
|
}
|
||
|
return heights;
|
||
|
};
|
||
|
|
||
|
var wrapLongitudeInversMatrix = new BoundingSphere.Matrix4();
|
||
|
var wrapLongitudeOrigin = new Cartographic.Cartesian3();
|
||
|
var wrapLongitudeXZNormal = new Cartographic.Cartesian3();
|
||
|
var wrapLongitudeXZPlane = new Plane.Plane(Cartographic.Cartesian3.UNIT_X, 0.0);
|
||
|
var wrapLongitudeYZNormal = new Cartographic.Cartesian3();
|
||
|
var wrapLongitudeYZPlane = new Plane.Plane(Cartographic.Cartesian3.UNIT_X, 0.0);
|
||
|
var wrapLongitudeIntersection = new Cartographic.Cartesian3();
|
||
|
var wrapLongitudeOffset = new Cartographic.Cartesian3();
|
||
|
|
||
|
var subdivideHeightsScratchArray = [];
|
||
|
|
||
|
function subdivideHeights(numPoints, h0, h1) {
|
||
|
var heights = subdivideHeightsScratchArray;
|
||
|
heights.length = numPoints;
|
||
|
|
||
|
var i;
|
||
|
if (h0 === h1) {
|
||
|
for (i = 0; i < numPoints; i++) {
|
||
|
heights[i] = h0;
|
||
|
}
|
||
|
return heights;
|
||
|
}
|
||
|
|
||
|
var dHeight = h1 - h0;
|
||
|
var heightPerVertex = dHeight / numPoints;
|
||
|
|
||
|
for (i = 0; i < numPoints; i++) {
|
||
|
var h = h0 + i*heightPerVertex;
|
||
|
heights[i] = h;
|
||
|
}
|
||
|
|
||
|
return heights;
|
||
|
}
|
||
|
|
||
|
function subdivideHeightsBySin(numPoints, hMax) {
|
||
|
var heights = subdivideHeightsScratchArray;
|
||
|
heights.length = numPoints;
|
||
|
|
||
|
for (var i = 0; i < numPoints; i++) {
|
||
|
heights[i] = hMax * Math.sin(Math.PI * i/numPoints);
|
||
|
}
|
||
|
|
||
|
return heights;
|
||
|
}
|
||
|
|
||
|
var carto1 = new Cartographic.Cartographic();
|
||
|
var carto2 = new Cartographic.Cartographic();
|
||
|
var cartesian = new Cartographic.Cartesian3();
|
||
|
var scaleFirst = new Cartographic.Cartesian3();
|
||
|
var scaleLast = new Cartographic.Cartesian3();
|
||
|
var ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic();
|
||
|
var ellipsoidRhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine();
|
||
|
|
||
|
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
|
||
|
//Result includes p1, but not include p2. This function is called for a sequence of line segments,
|
||
|
//and this prevents duplication of end point.
|
||
|
function generateCartesianArc(p0, p1, minDistance, ellipsoid, h0, h1, array, offset, hMax) {
|
||
|
var first = ellipsoid.scaleToGeodeticSurface(p0, scaleFirst);
|
||
|
var last = ellipsoid.scaleToGeodeticSurface(p1, scaleLast);
|
||
|
var numPoints = PolylinePipeline.numberOfPoints(p0, p1, minDistance);
|
||
|
var start = ellipsoid.cartesianToCartographic(first, carto1);
|
||
|
var end = ellipsoid.cartesianToCartographic(last, carto2);
|
||
|
var heights = subdivideHeights(numPoints, h0, h1);
|
||
|
if(hMax >0.0){
|
||
|
heights = subdivideHeightsBySin(numPoints, hMax);
|
||
|
}
|
||
|
|
||
|
ellipsoidGeodesic.setEndPoints(start, end);
|
||
|
var surfaceDistanceBetweenPoints = ellipsoidGeodesic.surfaceDistance / numPoints;
|
||
|
|
||
|
var index = offset;
|
||
|
start.height = h0;
|
||
|
var cart = ellipsoid.cartographicToCartesian(start, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, array, index);
|
||
|
index += 3;
|
||
|
|
||
|
for (var i = 1; i < numPoints; i++) {
|
||
|
var carto = ellipsoidGeodesic.interpolateUsingSurfaceDistance(i * surfaceDistanceBetweenPoints, carto2);
|
||
|
carto.height = heights[i];
|
||
|
cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, array, index);
|
||
|
index += 3;
|
||
|
}
|
||
|
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
|
||
|
//Result includes p1, but not include p2. This function is called for a sequence of line segments,
|
||
|
//and this prevents duplication of end point.
|
||
|
function generateCartesianRhumbArc(p0, p1, granularity, ellipsoid, h0, h1, array, offset) {
|
||
|
var first = ellipsoid.scaleToGeodeticSurface(p0, scaleFirst);
|
||
|
var last = ellipsoid.scaleToGeodeticSurface(p1, scaleLast);
|
||
|
var start = ellipsoid.cartesianToCartographic(first, carto1);
|
||
|
var end = ellipsoid.cartesianToCartographic(last, carto2);
|
||
|
|
||
|
var numPoints = PolylinePipeline.numberOfPointsRhumbLine(start, end, granularity);
|
||
|
var heights = subdivideHeights(numPoints, h0, h1);
|
||
|
|
||
|
if (!ellipsoidRhumb.ellipsoid.equals(ellipsoid)) {
|
||
|
ellipsoidRhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
|
||
|
}
|
||
|
ellipsoidRhumb.setEndPoints(start, end);
|
||
|
var surfaceDistanceBetweenPoints = ellipsoidRhumb.surfaceDistance / numPoints;
|
||
|
|
||
|
var index = offset;
|
||
|
start.height = h0;
|
||
|
var cart = ellipsoid.cartographicToCartesian(start, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, array, index);
|
||
|
index += 3;
|
||
|
|
||
|
for (var i = 1; i < numPoints; i++) {
|
||
|
var carto = ellipsoidRhumb.interpolateUsingSurfaceDistance(i * surfaceDistanceBetweenPoints, carto2);
|
||
|
carto.height = heights[i];
|
||
|
cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, array, index);
|
||
|
index += 3;
|
||
|
}
|
||
|
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Breaks a {@link Polyline} into segments such that it does not cross the ±180 degree meridian of an ellipsoid.
|
||
|
*
|
||
|
* @param {Cartesian3[]} positions The polyline's Cartesian positions.
|
||
|
* @param {Matrix4} [modelMatrix=Matrix4.IDENTITY] The polyline's model matrix. Assumed to be an affine
|
||
|
* transformation matrix, where the upper left 3x3 elements are a rotation matrix, and
|
||
|
* the upper three elements in the fourth column are the translation. The bottom row is assumed to be [0, 0, 0, 1].
|
||
|
* The matrix is not verified to be in the proper form.
|
||
|
* @returns {Object} An object with a <code>positions</code> property that is an array of positions and a
|
||
|
* <code>segments</code> property.
|
||
|
*
|
||
|
*
|
||
|
* @example
|
||
|
* var polylines = new Cesium.PolylineCollection();
|
||
|
* var polyline = polylines.add(...);
|
||
|
* var positions = polyline.positions;
|
||
|
* var modelMatrix = polylines.modelMatrix;
|
||
|
* var segments = Cesium.PolylinePipeline.wrapLongitude(positions, modelMatrix);
|
||
|
*
|
||
|
* @see PolygonPipeline.wrapLongitude
|
||
|
* @see Polyline
|
||
|
* @see PolylineCollection
|
||
|
*/
|
||
|
PolylinePipeline.wrapLongitude = function(positions, modelMatrix) {
|
||
|
var cartesians = [];
|
||
|
var segments = [];
|
||
|
|
||
|
if (when.defined(positions) && positions.length > 0) {
|
||
|
modelMatrix = when.defaultValue(modelMatrix, BoundingSphere.Matrix4.IDENTITY);
|
||
|
var inverseModelMatrix = BoundingSphere.Matrix4.inverseTransformation(modelMatrix, wrapLongitudeInversMatrix);
|
||
|
|
||
|
var origin = BoundingSphere.Matrix4.multiplyByPoint(inverseModelMatrix, Cartographic.Cartesian3.ZERO, wrapLongitudeOrigin);
|
||
|
var xzNormal = Cartographic.Cartesian3.normalize(BoundingSphere.Matrix4.multiplyByPointAsVector(inverseModelMatrix, Cartographic.Cartesian3.UNIT_Y, wrapLongitudeXZNormal), wrapLongitudeXZNormal);
|
||
|
var xzPlane = Plane.Plane.fromPointNormal(origin, xzNormal, wrapLongitudeXZPlane);
|
||
|
var yzNormal = Cartographic.Cartesian3.normalize(BoundingSphere.Matrix4.multiplyByPointAsVector(inverseModelMatrix, Cartographic.Cartesian3.UNIT_X, wrapLongitudeYZNormal), wrapLongitudeYZNormal);
|
||
|
var yzPlane = Plane.Plane.fromPointNormal(origin, yzNormal, wrapLongitudeYZPlane);
|
||
|
|
||
|
var count = 1;
|
||
|
cartesians.push(Cartographic.Cartesian3.clone(positions[0]));
|
||
|
var prev = cartesians[0];
|
||
|
|
||
|
var length = positions.length;
|
||
|
for (var i = 1; i < length; ++i) {
|
||
|
var cur = positions[i];
|
||
|
|
||
|
// intersects the IDL if either endpoint is on the negative side of the yz-plane
|
||
|
if (Plane.Plane.getPointDistance(yzPlane, prev) < 0.0 || Plane.Plane.getPointDistance(yzPlane, cur) < 0.0) {
|
||
|
// and intersects the xz-plane
|
||
|
var intersection = IntersectionTests.IntersectionTests.lineSegmentPlane(prev, cur, xzPlane, wrapLongitudeIntersection);
|
||
|
if (when.defined(intersection)) {
|
||
|
// move point on the xz-plane slightly away from the plane
|
||
|
var offset = Cartographic.Cartesian3.multiplyByScalar(xzNormal, 5.0e-9, wrapLongitudeOffset);
|
||
|
if (Plane.Plane.getPointDistance(xzPlane, prev) < 0.0) {
|
||
|
Cartographic.Cartesian3.negate(offset, offset);
|
||
|
}
|
||
|
|
||
|
cartesians.push(Cartographic.Cartesian3.add(intersection, offset, new Cartographic.Cartesian3()));
|
||
|
segments.push(count + 1);
|
||
|
|
||
|
Cartographic.Cartesian3.negate(offset, offset);
|
||
|
cartesians.push(Cartographic.Cartesian3.add(intersection, offset, new Cartographic.Cartesian3()));
|
||
|
count = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cartesians.push(Cartographic.Cartesian3.clone(positions[i]));
|
||
|
count++;
|
||
|
|
||
|
prev = cur;
|
||
|
}
|
||
|
|
||
|
segments.push(count);
|
||
|
}
|
||
|
|
||
|
return {
|
||
|
positions : cartesians,
|
||
|
lengths : segments
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Subdivides polyline and raises all points to the specified height. Returns an array of numbers to represent the positions.
|
||
|
* @param {Object} options Object with the following properties:
|
||
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
||
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
||
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
||
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
||
|
* @returns {Number[]} A new array of positions of type {Number} that have been subdivided and raised to the surface of the ellipsoid.
|
||
|
*
|
||
|
* @example
|
||
|
* var positions = Cesium.Cartesian3.fromDegreesArray([
|
||
|
* -105.0, 40.0,
|
||
|
* -100.0, 38.0,
|
||
|
* -105.0, 35.0,
|
||
|
* -100.0, 32.0
|
||
|
* ]);
|
||
|
* var surfacePositions = Cesium.PolylinePipeline.generateArc({
|
||
|
* positons: positions
|
||
|
* });
|
||
|
*/
|
||
|
PolylinePipeline.generateArc = function(options) {
|
||
|
if (!when.defined(options)) {
|
||
|
options = {};
|
||
|
}
|
||
|
var positions = options.positions;
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(positions)) {
|
||
|
throw new Check.DeveloperError('options.positions is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
var length = positions.length;
|
||
|
var ellipsoid = when.defaultValue(options.ellipsoid, Cartesian2.Ellipsoid.WGS84);
|
||
|
var height = when.defaultValue(options.height, 0);
|
||
|
var hasHeightArray = Array.isArray(height);
|
||
|
|
||
|
if (length < 1) {
|
||
|
return [];
|
||
|
} else if (length === 1) {
|
||
|
var p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
|
||
|
height = hasHeightArray ? height[0] : height;
|
||
|
if (height !== 0) {
|
||
|
var n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
|
||
|
Cartographic.Cartesian3.multiplyByScalar(n, height, n);
|
||
|
Cartographic.Cartesian3.add(p, n, p);
|
||
|
}
|
||
|
|
||
|
return [p.x, p.y, p.z];
|
||
|
}
|
||
|
|
||
|
var minDistance = options.minDistance;
|
||
|
if (!when.defined(minDistance)) {
|
||
|
var granularity = when.defaultValue(options.granularity, _Math.CesiumMath.RADIANS_PER_DEGREE);
|
||
|
minDistance = _Math.CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
|
||
|
}
|
||
|
|
||
|
var numPoints = 0;
|
||
|
var i;
|
||
|
|
||
|
for (i = 0; i < length -1; i++) {
|
||
|
numPoints += PolylinePipeline.numberOfPoints(positions[i], positions[i+1], minDistance);
|
||
|
}
|
||
|
|
||
|
var hMax = options.hMax;
|
||
|
|
||
|
var arrayLength = (numPoints + 1) * 3;
|
||
|
var newPositions = new Array(arrayLength);
|
||
|
var offset = 0;
|
||
|
|
||
|
for (i = 0; i < length - 1; i++) {
|
||
|
var p0 = positions[i];
|
||
|
var p1 = positions[i + 1];
|
||
|
|
||
|
var h0 = hasHeightArray ? height[i] : height;
|
||
|
var h1 = hasHeightArray ? height[i + 1] : height;
|
||
|
|
||
|
offset = generateCartesianArc(p0, p1, minDistance, ellipsoid, h0, h1, newPositions, offset, hMax);
|
||
|
}
|
||
|
|
||
|
subdivideHeightsScratchArray.length = 0;
|
||
|
|
||
|
var lastPoint = positions[length - 1];
|
||
|
var carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
|
||
|
carto.height = hasHeightArray ? height[length - 1] : height;
|
||
|
var cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, newPositions, arrayLength - 3);
|
||
|
|
||
|
return newPositions;
|
||
|
};
|
||
|
|
||
|
var scratchCartographic0 = new Cartographic.Cartographic();
|
||
|
var scratchCartographic1 = new Cartographic.Cartographic();
|
||
|
|
||
|
/**
|
||
|
* Subdivides polyline and raises all points to the specified height using Rhumb lines. Returns an array of numbers to represent the positions.
|
||
|
* @param {Object} options Object with the following properties:
|
||
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
||
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
||
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
||
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
||
|
* @returns {Number[]} A new array of positions of type {Number} that have been subdivided and raised to the surface of the ellipsoid.
|
||
|
*
|
||
|
* @example
|
||
|
* var positions = Cesium.Cartesian3.fromDegreesArray([
|
||
|
* -105.0, 40.0,
|
||
|
* -100.0, 38.0,
|
||
|
* -105.0, 35.0,
|
||
|
* -100.0, 32.0
|
||
|
* ]);
|
||
|
* var surfacePositions = Cesium.PolylinePipeline.generateRhumbArc({
|
||
|
* positons: positions
|
||
|
* });
|
||
|
*/
|
||
|
PolylinePipeline.generateRhumbArc = function(options) {
|
||
|
if (!when.defined(options)) {
|
||
|
options = {};
|
||
|
}
|
||
|
var positions = options.positions;
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(positions)) {
|
||
|
throw new Check.DeveloperError('options.positions is required.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
var length = positions.length;
|
||
|
var ellipsoid = when.defaultValue(options.ellipsoid, Cartesian2.Ellipsoid.WGS84);
|
||
|
var height = when.defaultValue(options.height, 0);
|
||
|
var hasHeightArray = Array.isArray(height);
|
||
|
|
||
|
if (length < 1) {
|
||
|
return [];
|
||
|
} else if (length === 1) {
|
||
|
var p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
|
||
|
height = hasHeightArray ? height[0] : height;
|
||
|
if (height !== 0) {
|
||
|
var n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
|
||
|
Cartographic.Cartesian3.multiplyByScalar(n, height, n);
|
||
|
Cartographic.Cartesian3.add(p, n, p);
|
||
|
}
|
||
|
|
||
|
return [p.x, p.y, p.z];
|
||
|
}
|
||
|
|
||
|
var granularity = when.defaultValue(options.granularity, _Math.CesiumMath.RADIANS_PER_DEGREE);
|
||
|
|
||
|
var numPoints = 0;
|
||
|
var i;
|
||
|
|
||
|
var c0 = ellipsoid.cartesianToCartographic(positions[0], scratchCartographic0);
|
||
|
var c1;
|
||
|
for (i = 0; i < length - 1; i++) {
|
||
|
c1 = ellipsoid.cartesianToCartographic(positions[i + 1], scratchCartographic1);
|
||
|
numPoints += PolylinePipeline.numberOfPointsRhumbLine(c0, c1, granularity);
|
||
|
c0 = Cartographic.Cartographic.clone(c1, scratchCartographic0);
|
||
|
}
|
||
|
|
||
|
var arrayLength = (numPoints + 1) * 3;
|
||
|
var newPositions = new Array(arrayLength);
|
||
|
var offset = 0;
|
||
|
|
||
|
for (i = 0; i < length - 1; i++) {
|
||
|
var p0 = positions[i];
|
||
|
var p1 = positions[i + 1];
|
||
|
|
||
|
var h0 = hasHeightArray ? height[i] : height;
|
||
|
var h1 = hasHeightArray ? height[i + 1] : height;
|
||
|
|
||
|
offset = generateCartesianRhumbArc(p0, p1, granularity, ellipsoid, h0, h1, newPositions, offset);
|
||
|
}
|
||
|
|
||
|
subdivideHeightsScratchArray.length = 0;
|
||
|
|
||
|
var lastPoint = positions[length - 1];
|
||
|
var carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
|
||
|
carto.height = hasHeightArray ? height[length - 1] : height;
|
||
|
var cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
||
|
Cartographic.Cartesian3.pack(cart, newPositions, arrayLength - 3);
|
||
|
|
||
|
return newPositions;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Subdivides polyline and raises all points to the specified height. Returns an array of new {Cartesian3} positions.
|
||
|
* @param {Object} options Object with the following properties:
|
||
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
||
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
||
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
||
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
||
|
* @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
|
||
|
*
|
||
|
* @example
|
||
|
* var positions = Cesium.Cartesian3.fromDegreesArray([
|
||
|
* -105.0, 40.0,
|
||
|
* -100.0, 38.0,
|
||
|
* -105.0, 35.0,
|
||
|
* -100.0, 32.0
|
||
|
* ]);
|
||
|
* var surfacePositions = Cesium.PolylinePipeline.generateCartesianArc({
|
||
|
* positons: positions
|
||
|
* });
|
||
|
*/
|
||
|
PolylinePipeline.generateCartesianArc = function(options) {
|
||
|
var numberArray = PolylinePipeline.generateArc(options);
|
||
|
var size = numberArray.length/3;
|
||
|
var newPositions = new Array(size);
|
||
|
for (var i = 0; i < size; i++) {
|
||
|
newPositions[i] = Cartographic.Cartesian3.unpack(numberArray, i*3);
|
||
|
}
|
||
|
return newPositions;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Subdivides polyline and raises all points to the specified height using Rhumb Lines. Returns an array of new {Cartesian3} positions.
|
||
|
* @param {Object} options Object with the following properties:
|
||
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
||
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
||
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
||
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
||
|
* @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
|
||
|
*
|
||
|
* @example
|
||
|
* var positions = Cesium.Cartesian3.fromDegreesArray([
|
||
|
* -105.0, 40.0,
|
||
|
* -100.0, 38.0,
|
||
|
* -105.0, 35.0,
|
||
|
* -100.0, 32.0
|
||
|
* ]);
|
||
|
* var surfacePositions = Cesium.PolylinePipeline.generateCartesianRhumbArc({
|
||
|
* positons: positions
|
||
|
* });
|
||
|
*/
|
||
|
PolylinePipeline.generateCartesianRhumbArc = function(options) {
|
||
|
var numberArray = PolylinePipeline.generateRhumbArc(options);
|
||
|
var size = numberArray.length/3;
|
||
|
var newPositions = new Array(size);
|
||
|
for (var i = 0; i < size; i++) {
|
||
|
newPositions[i] = Cartographic.Cartesian3.unpack(numberArray, i*3);
|
||
|
}
|
||
|
return newPositions;
|
||
|
};
|
||
|
|
||
|
exports.PolylinePipeline = PolylinePipeline;
|
||
|
|
||
|
});
|