Agriculture-front-end/public/Cesium/Workers/EllipsoidGeometry-7b16faf8.js

612 lines
28 KiB
JavaScript
Raw Normal View History

2023-04-16 22:33:44 +08:00
/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
*/
define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-f2a06374', './Cartesian2-16a61632', './BoundingSphere-d018a565', './ComponentDatatype-5862616f', './GeometryAttribute-1e248a71', './PrimitiveType-97893bc7', './GeometryAttributes-aacecde6', './IndexDatatype-9435b55f', './arrayFill-9766fb2e', './GeometryOffsetAttribute-999fc023', './VertexFormat-fe4db402'], function (exports, when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, ComponentDatatype, GeometryAttribute, PrimitiveType, GeometryAttributes, IndexDatatype, arrayFill, GeometryOffsetAttribute, VertexFormat) { 'use strict';
var scratchPosition = new Cartographic.Cartesian3();
var scratchNormal = new Cartographic.Cartesian3();
var scratchTangent = new Cartographic.Cartesian3();
var scratchBitangent = new Cartographic.Cartesian3();
var scratchNormalST = new Cartographic.Cartesian3();
var defaultRadii = new Cartographic.Cartesian3(1.0, 1.0, 1.0);
var cos = Math.cos;
var sin = Math.sin;
/**
* A description of an ellipsoid centered at the origin.
*
* @alias EllipsoidGeometry
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
* @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks.
* @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*
* @exception {DeveloperError} options.slicePartitions cannot be less than three.
* @exception {DeveloperError} options.stackPartitions cannot be less than three.
*
* @see EllipsoidGeometry#createGeometry
*
* @example
* var ellipsoid = new Cesium.EllipsoidGeometry({
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0)
* });
* var geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid);
*/
function EllipsoidGeometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
var radii = when.defaultValue(options.radii, defaultRadii);
var innerRadii = when.defaultValue(options.innerRadii, radii);
var minimumClock = when.defaultValue(options.minimumClock, 0.0);
var maximumClock = when.defaultValue(options.maximumClock, _Math.CesiumMath.TWO_PI);
var minimumCone = when.defaultValue(options.minimumCone, 0.0);
var maximumCone = when.defaultValue(options.maximumCone, _Math.CesiumMath.PI);
var stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 64));
var slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 64));
var vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
//>>includeStart('debug', pragmas.debug);
if (slicePartitions < 3) {
throw new Check.DeveloperError('options.slicePartitions cannot be less than three.');
}
if (stackPartitions < 3) {
throw new Check.DeveloperError('options.stackPartitions cannot be less than three.');
}
//>>includeEnd('debug');
this._radii = Cartographic.Cartesian3.clone(radii);
this._innerRadii = Cartographic.Cartesian3.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);
this._offsetAttribute = options.offsetAttribute;
this._workerName = 'createEllipsoidGeometry';
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
EllipsoidGeometry.packedLength = 2 * (Cartographic.Cartesian3.packedLength) + VertexFormat.VertexFormat.packedLength + 7;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipsoidGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
EllipsoidGeometry.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new Check.DeveloperError('value is required');
}
if (!when.defined(array)) {
throw new Check.DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
Cartographic.Cartesian3.pack(value._radii, array, startingIndex);
startingIndex += Cartographic.Cartesian3.packedLength;
Cartographic.Cartesian3.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartographic.Cartesian3.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
return array;
};
var scratchRadii = new Cartographic.Cartesian3();
var scratchInnerRadii = new Cartographic.Cartesian3();
var scratchVertexFormat = new VertexFormat.VertexFormat();
var scratchOptions = {
radii : scratchRadii,
innerRadii : scratchInnerRadii,
vertexFormat : scratchVertexFormat,
minimumClock : undefined,
maximumClock : undefined,
minimumCone : undefined,
maximumCone : undefined,
stackPartitions : undefined,
slicePartitions : undefined,
offsetAttribute : undefined
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipsoidGeometry} [result] The object into which to store the result.
* @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided.
*/
EllipsoidGeometry.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(array)) {
throw new Check.DeveloperError('array is required');
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
var radii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartographic.Cartesian3.packedLength;
var innerRadii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartographic.Cartesian3.packedLength;
var vertexFormat = VertexFormat.VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
startingIndex += VertexFormat.VertexFormat.packedLength;
var minimumClock = array[startingIndex++];
var maximumClock = array[startingIndex++];
var minimumCone = array[startingIndex++];
var maximumCone = array[startingIndex++];
var stackPartitions = array[startingIndex++];
var slicePartitions = array[startingIndex++];
var offsetAttribute = array[startingIndex];
if (!when.defined(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipsoidGeometry(scratchOptions);
}
result._radii = Cartographic.Cartesian3.clone(radii, result._radii);
result._innerRadii = Cartographic.Cartesian3.clone(innerRadii, result._innerRadii);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipsoidGeometry.createGeometry = function(ellipsoidGeometry) {
var radii = ellipsoidGeometry._radii;
if ((radii.x <= 0) || (radii.y <= 0) || (radii.z <= 0)) {
return;
}
var innerRadii = ellipsoidGeometry._innerRadii;
if ((innerRadii.x <= 0) || (innerRadii.y <= 0) || innerRadii.z <= 0) {
return;
}
var minimumClock = ellipsoidGeometry._minimumClock;
var maximumClock = ellipsoidGeometry._maximumClock;
var minimumCone = ellipsoidGeometry._minimumCone;
var maximumCone = ellipsoidGeometry._maximumCone;
var vertexFormat = ellipsoidGeometry._vertexFormat;
// Add an extra slice and stack so that the number of partitions is the
// number of surfaces rather than the number of joints
var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(slicePartitions * Math.abs(maximumClock - minimumClock) / _Math.CesiumMath.TWO_PI);
stackPartitions = Math.round(stackPartitions * Math.abs(maximumCone - minimumCone) / _Math.CesiumMath.PI);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
var i;
var j;
var index = 0;
// Create arrays for theta and phi. Duplicate first and last angle to
// allow different normals at the intersections.
var phis = [minimumCone];
var thetas = [minimumClock];
for (i = 0; i < stackPartitions; i++) {
phis.push(minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1));
}
phis.push(maximumCone);
for (j = 0; j < slicePartitions; j++) {
thetas.push(minimumClock + j * (maximumClock - minimumClock) / (slicePartitions - 1));
}
thetas.push(maximumClock);
var numPhis = phis.length;
var numThetas = thetas.length;
// Allow for extra indices if there is an inner surface and if we need
// to close the sides if the clock range is not a full circle
var extraIndices = 0;
var vertexMultiplier = 1.0;
var hasInnerSurface = ((innerRadii.x !== radii.x) || (innerRadii.y !== radii.y) || innerRadii.z !== radii.z);
var isTopOpen = false;
var isBotOpen = false;
var isClockOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2.0;
if (minimumCone > 0.0) {
isTopOpen = true;
extraIndices += (slicePartitions - 1);
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += (slicePartitions - 1);
}
if ((maximumClock - minimumClock) % _Math.CesiumMath.TWO_PI) {
isClockOpen = true;
extraIndices += ((stackPartitions - 1) * 2) + 1;
} else {
extraIndices += 1;
}
}
var vertexCount = numThetas * numPhis * vertexMultiplier;
var positions = new Float64Array(vertexCount * 3);
var isInner = arrayFill.arrayFill(new Array(vertexCount), false);
var negateNormal = arrayFill.arrayFill(new Array(vertexCount), false);
// Multiply by 6 because there are two triangles per sector
var indexCount = slicePartitions * stackPartitions * vertexMultiplier;
var numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier);
var indices = IndexDatatype.IndexDatatype.createTypedArray(indexCount, numIndices);
var normals = (vertexFormat.normal) ? new Float32Array(vertexCount * 3) : undefined;
var tangents = (vertexFormat.tangent) ? new Float32Array(vertexCount * 3) : undefined;
var bitangents = (vertexFormat.bitangent) ? new Float32Array(vertexCount * 3) : undefined;
var st = (vertexFormat.st) ? new Float32Array(vertexCount * 2) : undefined;
// Calculate sin/cos phi
var sinPhi = new Array(numPhis);
var cosPhi = new Array(numPhis);
for (i = 0; i < numPhis; i++) {
sinPhi[i] = sin(phis[i]);
cosPhi[i] = cos(phis[i]);
}
// Calculate sin/cos theta
var sinTheta = new Array(numThetas);
var cosTheta = new Array(numThetas);
for (j = 0; j < numThetas; j++) {
cosTheta[j] = cos(thetas[j]);
sinTheta[j] = sin(thetas[j]);
}
// Create outer surface
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Create inner surface
var vertexIndex = vertexCount / 2.0;
if (hasInnerSurface) {
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
// Keep track of which vertices are the inner and which ones
// need the normal to be negated
isInner[vertexIndex] = true;
if (i > 0 && i !== (numPhis - 1) && j !== 0 && j !== (numThetas - 1)) {
negateNormal[vertexIndex] = true;
}
vertexIndex++;
}
}
}
// Create indices for outer surface
index = 0;
var topOffset;
var bottomOffset;
for (i = 1; i < (numPhis - 2); i++) {
topOffset = i * numThetas;
bottomOffset = (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = bottomOffset + j + 1;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = topOffset + j;
}
}
// Create indices for inner surface
if (hasInnerSurface) {
var offset = numPhis * numThetas;
for (i = 1; i < (numPhis - 2); i++) {
topOffset = offset + i * numThetas;
bottomOffset = offset + (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j + 1;
}
}
}
var outerOffset;
var innerOffset;
if (hasInnerSurface) {
if (isTopOpen) {
// Connect the top of the inner surface to the top of the outer surface
innerOffset = numPhis * numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = i;
indices[index++] = i + 1;
indices[index++] = innerOffset + i + 1;
indices[index++] = i;
indices[index++] = innerOffset + i + 1;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
// Connect the bottom of the inner surface to the bottom of the outer surface
outerOffset = numPhis * numThetas - numThetas;
innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = outerOffset + i + 1;
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
indices[index++] = outerOffset + i + 1;
indices[index++] = innerOffset + i;
indices[index++] = innerOffset + i + 1;
}
}
}
// Connect the edges if clock is not closed
if (isClockOpen) {
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + (numThetas * i);
outerOffset = numThetas * i;
indices[index++] = innerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = outerOffset;
indices[index++] = innerOffset;
indices[index++] = innerOffset + numThetas;
indices[index++] = outerOffset + numThetas;
}
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + (numThetas * (i + 1)) - 1;
outerOffset = numThetas * (i + 1) - 1;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset;
indices[index++] = outerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset + numThetas;
indices[index++] = innerOffset;
}
}
var attributes = new GeometryAttributes.GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : positions
});
}
var stIndex = 0;
var normalIndex = 0;
var tangentIndex = 0;
var bitangentIndex = 0;
var vertexCountHalf = vertexCount / 2.0;
var ellipsoid;
var ellipsoidOuter = Cartesian2.Ellipsoid.fromCartesian3(radii);
var ellipsoidInner = Cartesian2.Ellipsoid.fromCartesian3(innerRadii);
if (vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
for (i = 0; i < vertexCount; i++) {
ellipsoid = (isInner[i]) ? ellipsoidInner : ellipsoidOuter;
var position = Cartographic.Cartesian3.fromArray(positions, i * 3, scratchPosition);
var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
if (negateNormal[i]) {
Cartographic.Cartesian3.negate(normal, normal);
}
if (vertexFormat.st) {
var normalST = Cartesian2.Cartesian2.negate(normal, scratchNormalST);
st[stIndex++] = (Math.atan2(normalST.y, normalST.x) / _Math.CesiumMath.TWO_PI) + 0.5;
st[stIndex++] = (Math.asin(normal.z) / Math.PI) + 0.5;
}
if (vertexFormat.normal) {
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
var tangent = scratchTangent;
// Use UNIT_X for the poles
var tangetOffset = 0;
var unit;
if (isInner[i]) {
tangetOffset = vertexCountHalf;
}
if ((!isTopOpen && (i >= tangetOffset && i < (tangetOffset + numThetas * 2)))) {
unit = Cartographic.Cartesian3.UNIT_X;
} else {
unit = Cartographic.Cartesian3.UNIT_Z;
}
Cartographic.Cartesian3.cross(unit, normal, tangent);
Cartographic.Cartesian3.normalize(tangent, tangent);
if (vertexFormat.tangent) {
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
}
if (vertexFormat.bitangent) {
var bitangent = Cartographic.Cartesian3.cross(normal, tangent, scratchBitangent);
Cartographic.Cartesian3.normalize(bitangent, bitangent);
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
}
}
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute : 2,
values : st
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : normals
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : tangents
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute : 3,
values : bitangents
});
}
}
if (when.defined(ellipsoidGeometry._offsetAttribute)) {
var length = positions.length;
var applyOffset = new Uint8Array(length / 3);
var offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
arrayFill.arrayFill(applyOffset, offsetValue);
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute : 1,
values : applyOffset
});
}
return new GeometryAttribute.Geometry({
attributes : attributes,
indices : indices,
primitiveType : PrimitiveType.PrimitiveType.TRIANGLES,
boundingSphere : BoundingSphere.BoundingSphere.fromEllipsoid(ellipsoidOuter),
offsetAttribute : ellipsoidGeometry._offsetAttribute
});
};
var unitEllipsoidGeometry;
/**
* Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere.
* @returns {Geometry} The computed vertices and indices.
*
* @private
*/
EllipsoidGeometry.getUnitEllipsoid = function() {
if (!when.defined(unitEllipsoidGeometry)) {
unitEllipsoidGeometry = EllipsoidGeometry.createGeometry((new EllipsoidGeometry({
radii : new Cartographic.Cartesian3(1.0, 1.0, 1.0),
vertexFormat : VertexFormat.VertexFormat.POSITION_ONLY
})));
}
return unitEllipsoidGeometry;
};
exports.EllipsoidGeometry = EllipsoidGeometry;
});