612 lines
28 KiB
JavaScript
612 lines
28 KiB
JavaScript
|
/**
|
||
|
* Cesium - https://github.com/CesiumGS/cesium
|
||
|
*
|
||
|
* Copyright 2011-2020 Cesium Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* Columbus View (Pat. Pend.)
|
||
|
*
|
||
|
* Portions licensed separately.
|
||
|
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
|
||
|
*/
|
||
|
define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-f2a06374', './Cartesian2-16a61632', './BoundingSphere-d018a565', './ComponentDatatype-5862616f', './GeometryAttribute-1e248a71', './PrimitiveType-97893bc7', './GeometryAttributes-aacecde6', './IndexDatatype-9435b55f', './arrayFill-9766fb2e', './GeometryOffsetAttribute-999fc023', './VertexFormat-fe4db402'], function (exports, when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, ComponentDatatype, GeometryAttribute, PrimitiveType, GeometryAttributes, IndexDatatype, arrayFill, GeometryOffsetAttribute, VertexFormat) { 'use strict';
|
||
|
|
||
|
var scratchPosition = new Cartographic.Cartesian3();
|
||
|
var scratchNormal = new Cartographic.Cartesian3();
|
||
|
var scratchTangent = new Cartographic.Cartesian3();
|
||
|
var scratchBitangent = new Cartographic.Cartesian3();
|
||
|
var scratchNormalST = new Cartographic.Cartesian3();
|
||
|
var defaultRadii = new Cartographic.Cartesian3(1.0, 1.0, 1.0);
|
||
|
|
||
|
var cos = Math.cos;
|
||
|
var sin = Math.sin;
|
||
|
|
||
|
/**
|
||
|
* A description of an ellipsoid centered at the origin.
|
||
|
*
|
||
|
* @alias EllipsoidGeometry
|
||
|
* @constructor
|
||
|
*
|
||
|
* @param {Object} [options] Object with the following properties:
|
||
|
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
|
||
|
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
|
||
|
* @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
|
||
|
* @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
|
||
|
* @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
|
||
|
* @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
|
||
|
* @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks.
|
||
|
* @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices.
|
||
|
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
|
||
|
*
|
||
|
* @exception {DeveloperError} options.slicePartitions cannot be less than three.
|
||
|
* @exception {DeveloperError} options.stackPartitions cannot be less than three.
|
||
|
*
|
||
|
* @see EllipsoidGeometry#createGeometry
|
||
|
*
|
||
|
* @example
|
||
|
* var ellipsoid = new Cesium.EllipsoidGeometry({
|
||
|
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
|
||
|
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0)
|
||
|
* });
|
||
|
* var geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid);
|
||
|
*/
|
||
|
function EllipsoidGeometry(options) {
|
||
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
||
|
|
||
|
var radii = when.defaultValue(options.radii, defaultRadii);
|
||
|
var innerRadii = when.defaultValue(options.innerRadii, radii);
|
||
|
var minimumClock = when.defaultValue(options.minimumClock, 0.0);
|
||
|
var maximumClock = when.defaultValue(options.maximumClock, _Math.CesiumMath.TWO_PI);
|
||
|
var minimumCone = when.defaultValue(options.minimumCone, 0.0);
|
||
|
var maximumCone = when.defaultValue(options.maximumCone, _Math.CesiumMath.PI);
|
||
|
var stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 64));
|
||
|
var slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 64));
|
||
|
var vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
|
||
|
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (slicePartitions < 3) {
|
||
|
throw new Check.DeveloperError('options.slicePartitions cannot be less than three.');
|
||
|
}
|
||
|
if (stackPartitions < 3) {
|
||
|
throw new Check.DeveloperError('options.stackPartitions cannot be less than three.');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
this._radii = Cartographic.Cartesian3.clone(radii);
|
||
|
this._innerRadii = Cartographic.Cartesian3.clone(innerRadii);
|
||
|
this._minimumClock = minimumClock;
|
||
|
this._maximumClock = maximumClock;
|
||
|
this._minimumCone = minimumCone;
|
||
|
this._maximumCone = maximumCone;
|
||
|
this._stackPartitions = stackPartitions;
|
||
|
this._slicePartitions = slicePartitions;
|
||
|
this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);
|
||
|
this._offsetAttribute = options.offsetAttribute;
|
||
|
this._workerName = 'createEllipsoidGeometry';
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The number of elements used to pack the object into an array.
|
||
|
* @type {Number}
|
||
|
*/
|
||
|
EllipsoidGeometry.packedLength = 2 * (Cartographic.Cartesian3.packedLength) + VertexFormat.VertexFormat.packedLength + 7;
|
||
|
|
||
|
/**
|
||
|
* Stores the provided instance into the provided array.
|
||
|
*
|
||
|
* @param {EllipsoidGeometry} value The value to pack.
|
||
|
* @param {Number[]} array The array to pack into.
|
||
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
||
|
*
|
||
|
* @returns {Number[]} The array that was packed into
|
||
|
*/
|
||
|
EllipsoidGeometry.pack = function(value, array, startingIndex) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(value)) {
|
||
|
throw new Check.DeveloperError('value is required');
|
||
|
}
|
||
|
if (!when.defined(array)) {
|
||
|
throw new Check.DeveloperError('array is required');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
startingIndex = when.defaultValue(startingIndex, 0);
|
||
|
|
||
|
Cartographic.Cartesian3.pack(value._radii, array, startingIndex);
|
||
|
startingIndex += Cartographic.Cartesian3.packedLength;
|
||
|
|
||
|
Cartographic.Cartesian3.pack(value._innerRadii, array, startingIndex);
|
||
|
startingIndex += Cartographic.Cartesian3.packedLength;
|
||
|
|
||
|
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
|
||
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
||
|
|
||
|
array[startingIndex++] = value._minimumClock;
|
||
|
array[startingIndex++] = value._maximumClock;
|
||
|
array[startingIndex++] = value._minimumCone;
|
||
|
array[startingIndex++] = value._maximumCone;
|
||
|
array[startingIndex++] = value._stackPartitions;
|
||
|
array[startingIndex++] = value._slicePartitions;
|
||
|
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
|
||
|
|
||
|
return array;
|
||
|
};
|
||
|
|
||
|
var scratchRadii = new Cartographic.Cartesian3();
|
||
|
var scratchInnerRadii = new Cartographic.Cartesian3();
|
||
|
var scratchVertexFormat = new VertexFormat.VertexFormat();
|
||
|
var scratchOptions = {
|
||
|
radii : scratchRadii,
|
||
|
innerRadii : scratchInnerRadii,
|
||
|
vertexFormat : scratchVertexFormat,
|
||
|
minimumClock : undefined,
|
||
|
maximumClock : undefined,
|
||
|
minimumCone : undefined,
|
||
|
maximumCone : undefined,
|
||
|
stackPartitions : undefined,
|
||
|
slicePartitions : undefined,
|
||
|
offsetAttribute : undefined
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Retrieves an instance from a packed array.
|
||
|
*
|
||
|
* @param {Number[]} array The packed array.
|
||
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
||
|
* @param {EllipsoidGeometry} [result] The object into which to store the result.
|
||
|
* @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided.
|
||
|
*/
|
||
|
EllipsoidGeometry.unpack = function(array, startingIndex, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(array)) {
|
||
|
throw new Check.DeveloperError('array is required');
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
startingIndex = when.defaultValue(startingIndex, 0);
|
||
|
|
||
|
var radii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchRadii);
|
||
|
startingIndex += Cartographic.Cartesian3.packedLength;
|
||
|
|
||
|
var innerRadii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
|
||
|
startingIndex += Cartographic.Cartesian3.packedLength;
|
||
|
|
||
|
var vertexFormat = VertexFormat.VertexFormat.unpack(array, startingIndex, scratchVertexFormat);
|
||
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
||
|
|
||
|
var minimumClock = array[startingIndex++];
|
||
|
var maximumClock = array[startingIndex++];
|
||
|
var minimumCone = array[startingIndex++];
|
||
|
var maximumCone = array[startingIndex++];
|
||
|
var stackPartitions = array[startingIndex++];
|
||
|
var slicePartitions = array[startingIndex++];
|
||
|
var offsetAttribute = array[startingIndex];
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
scratchOptions.minimumClock = minimumClock;
|
||
|
scratchOptions.maximumClock = maximumClock;
|
||
|
scratchOptions.minimumCone = minimumCone;
|
||
|
scratchOptions.maximumCone = maximumCone;
|
||
|
scratchOptions.stackPartitions = stackPartitions;
|
||
|
scratchOptions.slicePartitions = slicePartitions;
|
||
|
scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
|
||
|
return new EllipsoidGeometry(scratchOptions);
|
||
|
}
|
||
|
|
||
|
result._radii = Cartographic.Cartesian3.clone(radii, result._radii);
|
||
|
result._innerRadii = Cartographic.Cartesian3.clone(innerRadii, result._innerRadii);
|
||
|
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
|
||
|
result._minimumClock = minimumClock;
|
||
|
result._maximumClock = maximumClock;
|
||
|
result._minimumCone = minimumCone;
|
||
|
result._maximumCone = maximumCone;
|
||
|
result._stackPartitions = stackPartitions;
|
||
|
result._slicePartitions = slicePartitions;
|
||
|
result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute;
|
||
|
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere.
|
||
|
*
|
||
|
* @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid.
|
||
|
* @returns {Geometry|undefined} The computed vertices and indices.
|
||
|
*/
|
||
|
EllipsoidGeometry.createGeometry = function(ellipsoidGeometry) {
|
||
|
var radii = ellipsoidGeometry._radii;
|
||
|
if ((radii.x <= 0) || (radii.y <= 0) || (radii.z <= 0)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
var innerRadii = ellipsoidGeometry._innerRadii;
|
||
|
if ((innerRadii.x <= 0) || (innerRadii.y <= 0) || innerRadii.z <= 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
var minimumClock = ellipsoidGeometry._minimumClock;
|
||
|
var maximumClock = ellipsoidGeometry._maximumClock;
|
||
|
var minimumCone = ellipsoidGeometry._minimumCone;
|
||
|
var maximumCone = ellipsoidGeometry._maximumCone;
|
||
|
var vertexFormat = ellipsoidGeometry._vertexFormat;
|
||
|
|
||
|
// Add an extra slice and stack so that the number of partitions is the
|
||
|
// number of surfaces rather than the number of joints
|
||
|
var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
|
||
|
var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
|
||
|
|
||
|
slicePartitions = Math.round(slicePartitions * Math.abs(maximumClock - minimumClock) / _Math.CesiumMath.TWO_PI);
|
||
|
stackPartitions = Math.round(stackPartitions * Math.abs(maximumCone - minimumCone) / _Math.CesiumMath.PI);
|
||
|
|
||
|
if (slicePartitions < 2) {
|
||
|
slicePartitions = 2;
|
||
|
}
|
||
|
if (stackPartitions < 2) {
|
||
|
stackPartitions = 2;
|
||
|
}
|
||
|
|
||
|
var i;
|
||
|
var j;
|
||
|
var index = 0;
|
||
|
|
||
|
// Create arrays for theta and phi. Duplicate first and last angle to
|
||
|
// allow different normals at the intersections.
|
||
|
var phis = [minimumCone];
|
||
|
var thetas = [minimumClock];
|
||
|
for (i = 0; i < stackPartitions; i++) {
|
||
|
phis.push(minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1));
|
||
|
}
|
||
|
phis.push(maximumCone);
|
||
|
for (j = 0; j < slicePartitions; j++) {
|
||
|
thetas.push(minimumClock + j * (maximumClock - minimumClock) / (slicePartitions - 1));
|
||
|
}
|
||
|
thetas.push(maximumClock);
|
||
|
var numPhis = phis.length;
|
||
|
var numThetas = thetas.length;
|
||
|
|
||
|
// Allow for extra indices if there is an inner surface and if we need
|
||
|
// to close the sides if the clock range is not a full circle
|
||
|
var extraIndices = 0;
|
||
|
var vertexMultiplier = 1.0;
|
||
|
var hasInnerSurface = ((innerRadii.x !== radii.x) || (innerRadii.y !== radii.y) || innerRadii.z !== radii.z);
|
||
|
var isTopOpen = false;
|
||
|
var isBotOpen = false;
|
||
|
var isClockOpen = false;
|
||
|
if (hasInnerSurface) {
|
||
|
vertexMultiplier = 2.0;
|
||
|
if (minimumCone > 0.0) {
|
||
|
isTopOpen = true;
|
||
|
extraIndices += (slicePartitions - 1);
|
||
|
}
|
||
|
if (maximumCone < Math.PI) {
|
||
|
isBotOpen = true;
|
||
|
extraIndices += (slicePartitions - 1);
|
||
|
}
|
||
|
if ((maximumClock - minimumClock) % _Math.CesiumMath.TWO_PI) {
|
||
|
isClockOpen = true;
|
||
|
extraIndices += ((stackPartitions - 1) * 2) + 1;
|
||
|
} else {
|
||
|
extraIndices += 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var vertexCount = numThetas * numPhis * vertexMultiplier;
|
||
|
var positions = new Float64Array(vertexCount * 3);
|
||
|
var isInner = arrayFill.arrayFill(new Array(vertexCount), false);
|
||
|
var negateNormal = arrayFill.arrayFill(new Array(vertexCount), false);
|
||
|
|
||
|
// Multiply by 6 because there are two triangles per sector
|
||
|
var indexCount = slicePartitions * stackPartitions * vertexMultiplier;
|
||
|
var numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier);
|
||
|
var indices = IndexDatatype.IndexDatatype.createTypedArray(indexCount, numIndices);
|
||
|
|
||
|
var normals = (vertexFormat.normal) ? new Float32Array(vertexCount * 3) : undefined;
|
||
|
var tangents = (vertexFormat.tangent) ? new Float32Array(vertexCount * 3) : undefined;
|
||
|
var bitangents = (vertexFormat.bitangent) ? new Float32Array(vertexCount * 3) : undefined;
|
||
|
var st = (vertexFormat.st) ? new Float32Array(vertexCount * 2) : undefined;
|
||
|
|
||
|
// Calculate sin/cos phi
|
||
|
var sinPhi = new Array(numPhis);
|
||
|
var cosPhi = new Array(numPhis);
|
||
|
for (i = 0; i < numPhis; i++) {
|
||
|
sinPhi[i] = sin(phis[i]);
|
||
|
cosPhi[i] = cos(phis[i]);
|
||
|
}
|
||
|
|
||
|
// Calculate sin/cos theta
|
||
|
var sinTheta = new Array(numThetas);
|
||
|
var cosTheta = new Array(numThetas);
|
||
|
for (j = 0; j < numThetas; j++) {
|
||
|
cosTheta[j] = cos(thetas[j]);
|
||
|
sinTheta[j] = sin(thetas[j]);
|
||
|
}
|
||
|
|
||
|
// Create outer surface
|
||
|
for (i = 0; i < numPhis; i++) {
|
||
|
for (j = 0; j < numThetas; j++) {
|
||
|
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
|
||
|
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
|
||
|
positions[index++] = radii.z * cosPhi[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create inner surface
|
||
|
var vertexIndex = vertexCount / 2.0;
|
||
|
if (hasInnerSurface) {
|
||
|
for (i = 0; i < numPhis; i++) {
|
||
|
for (j = 0; j < numThetas; j++) {
|
||
|
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
|
||
|
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
|
||
|
positions[index++] = innerRadii.z * cosPhi[i];
|
||
|
|
||
|
// Keep track of which vertices are the inner and which ones
|
||
|
// need the normal to be negated
|
||
|
isInner[vertexIndex] = true;
|
||
|
if (i > 0 && i !== (numPhis - 1) && j !== 0 && j !== (numThetas - 1)) {
|
||
|
negateNormal[vertexIndex] = true;
|
||
|
}
|
||
|
vertexIndex++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create indices for outer surface
|
||
|
index = 0;
|
||
|
var topOffset;
|
||
|
var bottomOffset;
|
||
|
for (i = 1; i < (numPhis - 2); i++) {
|
||
|
topOffset = i * numThetas;
|
||
|
bottomOffset = (i + 1) * numThetas;
|
||
|
|
||
|
for (j = 1; j < numThetas - 2; j++) {
|
||
|
indices[index++] = bottomOffset + j;
|
||
|
indices[index++] = bottomOffset + j + 1;
|
||
|
indices[index++] = topOffset + j + 1;
|
||
|
|
||
|
indices[index++] = bottomOffset + j;
|
||
|
indices[index++] = topOffset + j + 1;
|
||
|
indices[index++] = topOffset + j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create indices for inner surface
|
||
|
if (hasInnerSurface) {
|
||
|
var offset = numPhis * numThetas;
|
||
|
for (i = 1; i < (numPhis - 2); i++) {
|
||
|
topOffset = offset + i * numThetas;
|
||
|
bottomOffset = offset + (i + 1) * numThetas;
|
||
|
|
||
|
for (j = 1; j < numThetas - 2; j++) {
|
||
|
indices[index++] = bottomOffset + j;
|
||
|
indices[index++] = topOffset + j;
|
||
|
indices[index++] = topOffset + j + 1;
|
||
|
|
||
|
indices[index++] = bottomOffset + j;
|
||
|
indices[index++] = topOffset + j + 1;
|
||
|
indices[index++] = bottomOffset + j + 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var outerOffset;
|
||
|
var innerOffset;
|
||
|
if (hasInnerSurface) {
|
||
|
if (isTopOpen) {
|
||
|
// Connect the top of the inner surface to the top of the outer surface
|
||
|
innerOffset = numPhis * numThetas;
|
||
|
for (i = 1; i < numThetas - 2; i++) {
|
||
|
indices[index++] = i;
|
||
|
indices[index++] = i + 1;
|
||
|
indices[index++] = innerOffset + i + 1;
|
||
|
|
||
|
indices[index++] = i;
|
||
|
indices[index++] = innerOffset + i + 1;
|
||
|
indices[index++] = innerOffset + i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (isBotOpen) {
|
||
|
// Connect the bottom of the inner surface to the bottom of the outer surface
|
||
|
outerOffset = numPhis * numThetas - numThetas;
|
||
|
innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
|
||
|
for (i = 1; i < numThetas - 2; i++) {
|
||
|
indices[index++] = outerOffset + i + 1;
|
||
|
indices[index++] = outerOffset + i;
|
||
|
indices[index++] = innerOffset + i;
|
||
|
|
||
|
indices[index++] = outerOffset + i + 1;
|
||
|
indices[index++] = innerOffset + i;
|
||
|
indices[index++] = innerOffset + i + 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Connect the edges if clock is not closed
|
||
|
if (isClockOpen) {
|
||
|
for (i = 1; i < numPhis - 2; i++) {
|
||
|
innerOffset = numThetas * numPhis + (numThetas * i);
|
||
|
outerOffset = numThetas * i;
|
||
|
indices[index++] = innerOffset;
|
||
|
indices[index++] = outerOffset + numThetas;
|
||
|
indices[index++] = outerOffset;
|
||
|
|
||
|
indices[index++] = innerOffset;
|
||
|
indices[index++] = innerOffset + numThetas;
|
||
|
indices[index++] = outerOffset + numThetas;
|
||
|
}
|
||
|
|
||
|
for (i = 1; i < numPhis - 2; i++) {
|
||
|
innerOffset = numThetas * numPhis + (numThetas * (i + 1)) - 1;
|
||
|
outerOffset = numThetas * (i + 1) - 1;
|
||
|
indices[index++] = outerOffset + numThetas;
|
||
|
indices[index++] = innerOffset;
|
||
|
indices[index++] = outerOffset;
|
||
|
|
||
|
indices[index++] = outerOffset + numThetas;
|
||
|
indices[index++] = innerOffset + numThetas;
|
||
|
indices[index++] = innerOffset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
var attributes = new GeometryAttributes.GeometryAttributes();
|
||
|
|
||
|
if (vertexFormat.position) {
|
||
|
attributes.position = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE,
|
||
|
componentsPerAttribute : 3,
|
||
|
values : positions
|
||
|
});
|
||
|
}
|
||
|
|
||
|
var stIndex = 0;
|
||
|
var normalIndex = 0;
|
||
|
var tangentIndex = 0;
|
||
|
var bitangentIndex = 0;
|
||
|
var vertexCountHalf = vertexCount / 2.0;
|
||
|
|
||
|
var ellipsoid;
|
||
|
var ellipsoidOuter = Cartesian2.Ellipsoid.fromCartesian3(radii);
|
||
|
var ellipsoidInner = Cartesian2.Ellipsoid.fromCartesian3(innerRadii);
|
||
|
|
||
|
if (vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
|
||
|
for (i = 0; i < vertexCount; i++) {
|
||
|
ellipsoid = (isInner[i]) ? ellipsoidInner : ellipsoidOuter;
|
||
|
var position = Cartographic.Cartesian3.fromArray(positions, i * 3, scratchPosition);
|
||
|
var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
|
||
|
if (negateNormal[i]) {
|
||
|
Cartographic.Cartesian3.negate(normal, normal);
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.st) {
|
||
|
var normalST = Cartesian2.Cartesian2.negate(normal, scratchNormalST);
|
||
|
st[stIndex++] = (Math.atan2(normalST.y, normalST.x) / _Math.CesiumMath.TWO_PI) + 0.5;
|
||
|
st[stIndex++] = (Math.asin(normal.z) / Math.PI) + 0.5;
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.normal) {
|
||
|
normals[normalIndex++] = normal.x;
|
||
|
normals[normalIndex++] = normal.y;
|
||
|
normals[normalIndex++] = normal.z;
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.tangent || vertexFormat.bitangent) {
|
||
|
var tangent = scratchTangent;
|
||
|
|
||
|
// Use UNIT_X for the poles
|
||
|
var tangetOffset = 0;
|
||
|
var unit;
|
||
|
if (isInner[i]) {
|
||
|
tangetOffset = vertexCountHalf;
|
||
|
}
|
||
|
if ((!isTopOpen && (i >= tangetOffset && i < (tangetOffset + numThetas * 2)))) {
|
||
|
unit = Cartographic.Cartesian3.UNIT_X;
|
||
|
} else {
|
||
|
unit = Cartographic.Cartesian3.UNIT_Z;
|
||
|
}
|
||
|
Cartographic.Cartesian3.cross(unit, normal, tangent);
|
||
|
Cartographic.Cartesian3.normalize(tangent, tangent);
|
||
|
|
||
|
if (vertexFormat.tangent) {
|
||
|
tangents[tangentIndex++] = tangent.x;
|
||
|
tangents[tangentIndex++] = tangent.y;
|
||
|
tangents[tangentIndex++] = tangent.z;
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.bitangent) {
|
||
|
var bitangent = Cartographic.Cartesian3.cross(normal, tangent, scratchBitangent);
|
||
|
Cartographic.Cartesian3.normalize(bitangent, bitangent);
|
||
|
|
||
|
bitangents[bitangentIndex++] = bitangent.x;
|
||
|
bitangents[bitangentIndex++] = bitangent.y;
|
||
|
bitangents[bitangentIndex++] = bitangent.z;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.st) {
|
||
|
attributes.st = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute : 2,
|
||
|
values : st
|
||
|
});
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.normal) {
|
||
|
attributes.normal = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute : 3,
|
||
|
values : normals
|
||
|
});
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.tangent) {
|
||
|
attributes.tangent = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute : 3,
|
||
|
values : tangents
|
||
|
});
|
||
|
}
|
||
|
|
||
|
if (vertexFormat.bitangent) {
|
||
|
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute : 3,
|
||
|
values : bitangents
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (when.defined(ellipsoidGeometry._offsetAttribute)) {
|
||
|
var length = positions.length;
|
||
|
var applyOffset = new Uint8Array(length / 3);
|
||
|
var offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
|
||
|
arrayFill.arrayFill(applyOffset, offsetValue);
|
||
|
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype : ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
||
|
componentsPerAttribute : 1,
|
||
|
values : applyOffset
|
||
|
});
|
||
|
}
|
||
|
|
||
|
return new GeometryAttribute.Geometry({
|
||
|
attributes : attributes,
|
||
|
indices : indices,
|
||
|
primitiveType : PrimitiveType.PrimitiveType.TRIANGLES,
|
||
|
boundingSphere : BoundingSphere.BoundingSphere.fromEllipsoid(ellipsoidOuter),
|
||
|
offsetAttribute : ellipsoidGeometry._offsetAttribute
|
||
|
});
|
||
|
};
|
||
|
|
||
|
var unitEllipsoidGeometry;
|
||
|
|
||
|
/**
|
||
|
* Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere.
|
||
|
* @returns {Geometry} The computed vertices and indices.
|
||
|
*
|
||
|
* @private
|
||
|
*/
|
||
|
EllipsoidGeometry.getUnitEllipsoid = function() {
|
||
|
if (!when.defined(unitEllipsoidGeometry)) {
|
||
|
unitEllipsoidGeometry = EllipsoidGeometry.createGeometry((new EllipsoidGeometry({
|
||
|
radii : new Cartographic.Cartesian3(1.0, 1.0, 1.0),
|
||
|
vertexFormat : VertexFormat.VertexFormat.POSITION_ONLY
|
||
|
})));
|
||
|
}
|
||
|
return unitEllipsoidGeometry;
|
||
|
};
|
||
|
|
||
|
exports.EllipsoidGeometry = EllipsoidGeometry;
|
||
|
|
||
|
});
|