Agriculture-front-end/public/Cesium/Workers/PolygonGeometryLibrary-64dcca10.js

714 lines
29 KiB
JavaScript
Raw Normal View History

2023-04-16 22:33:44 +08:00
/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
*/
define(['exports', './when-8d13db60', './Math-61ede240', './Cartographic-f2a06374', './Cartesian2-16a61632', './BoundingSphere-d018a565', './ComponentDatatype-5862616f', './GeometryAttribute-773da12d', './PrimitiveType-97893bc7', './Transforms-f77c92da', './GeometryAttributes-aacecde6', './GeometryPipeline-cbdfe22f', './IndexDatatype-9435b55f', './arrayRemoveDuplicates-2869246d', './ArcType-66bc286a', './EllipsoidRhumbLine-87f26cac', './PolygonPipeline-6175e66b'], function (exports, when, _Math, Cartographic, Cartesian2, BoundingSphere, ComponentDatatype, GeometryAttribute, PrimitiveType, Transforms, GeometryAttributes, GeometryPipeline, IndexDatatype, arrayRemoveDuplicates, ArcType, EllipsoidRhumbLine, PolygonPipeline) { 'use strict';
/**
* A queue that can enqueue items at the end, and dequeue items from the front.
*
* @alias Queue
* @constructor
*/
function Queue() {
this._array = [];
this._offset = 0;
this._length = 0;
}
Object.defineProperties(Queue.prototype, {
/**
* The length of the queue.
*
* @memberof Queue.prototype
*
* @type {Number}
* @readonly
*/
length : {
get : function() {
return this._length;
}
}
});
/**
* Enqueues the specified item.
*
* @param {*} item The item to enqueue.
*/
Queue.prototype.enqueue = function(item) {
this._array.push(item);
this._length++;
};
/**
* Dequeues an item. Returns undefined if the queue is empty.
*
* @returns {*} The the dequeued item.
*/
Queue.prototype.dequeue = function() {
if (this._length === 0) {
return undefined;
}
var array = this._array;
var offset = this._offset;
var item = array[offset];
array[offset] = undefined;
offset++;
if ((offset > 10) && (offset * 2 > array.length)) {
//compact array
this._array = array.slice(offset);
offset = 0;
}
this._offset = offset;
this._length--;
return item;
};
/**
* Returns the item at the front of the queue. Returns undefined if the queue is empty.
*
* @returns {*} The item at the front of the queue.
*/
Queue.prototype.peek = function() {
if (this._length === 0) {
return undefined;
}
return this._array[this._offset];
};
/**
* Check whether this queue contains the specified item.
*
* @param {*} item The item to search for.
*/
Queue.prototype.contains = function(item) {
return this._array.indexOf(item) !== -1;
};
/**
* Remove all items from the queue.
*/
Queue.prototype.clear = function() {
this._array.length = this._offset = this._length = 0;
};
/**
* Sort the items in the queue in-place.
*
* @param {Queue~Comparator} compareFunction A function that defines the sort order.
*/
Queue.prototype.sort = function(compareFunction) {
if (this._offset > 0) {
//compact array
this._array = this._array.slice(this._offset);
this._offset = 0;
}
this._array.sort(compareFunction);
};
/**
* @private
*/
var PolygonGeometryLibrary = {};
PolygonGeometryLibrary.computeHierarchyPackedLength = function(polygonHierarchy) {
var numComponents = 0;
var stack = [polygonHierarchy];
while (stack.length > 0) {
var hierarchy = stack.pop();
if (!when.defined(hierarchy)) {
continue;
}
numComponents += 2;
var positions = hierarchy.positions;
var holes = hierarchy.holes;
if (when.defined(positions)) {
numComponents += positions.length * Cartographic.Cartesian3.packedLength;
}
if (when.defined(holes)) {
var length = holes.length;
for (var i = 0; i < length; ++i) {
stack.push(holes[i]);
}
}
}
return numComponents;
};
PolygonGeometryLibrary.packPolygonHierarchy = function(polygonHierarchy, array, startingIndex) {
var stack = [polygonHierarchy];
while (stack.length > 0) {
var hierarchy = stack.pop();
if (!when.defined(hierarchy)) {
continue;
}
var positions = hierarchy.positions;
var holes = hierarchy.holes;
array[startingIndex++] = when.defined(positions) ? positions.length : 0;
array[startingIndex++] = when.defined(holes) ? holes.length : 0;
if (when.defined(positions)) {
var positionsLength = positions.length;
for (var i = 0; i < positionsLength; ++i, startingIndex += 3) {
Cartographic.Cartesian3.pack(positions[i], array, startingIndex);
}
}
if (when.defined(holes)) {
var holesLength = holes.length;
for (var j = 0; j < holesLength; ++j) {
stack.push(holes[j]);
}
}
}
return startingIndex;
};
PolygonGeometryLibrary.unpackPolygonHierarchy = function(array, startingIndex) {
var positionsLength = array[startingIndex++];
var holesLength = array[startingIndex++];
var positions = new Array(positionsLength);
var holes = holesLength > 0 ? new Array(holesLength) : undefined;
for (var i = 0; i < positionsLength; ++i, startingIndex += Cartographic.Cartesian3.packedLength) {
positions[i] = Cartographic.Cartesian3.unpack(array, startingIndex);
}
for (var j = 0; j < holesLength; ++j) {
holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy(array, startingIndex);
startingIndex = holes[j].startingIndex;
delete holes[j].startingIndex;
}
return {
positions : positions,
holes : holes,
startingIndex : startingIndex
};
};
var distanceScratch = new Cartographic.Cartesian3();
function getPointAtDistance(p0, p1, distance, length) {
Cartographic.Cartesian3.subtract(p1, p0, distanceScratch);
Cartographic.Cartesian3.multiplyByScalar(distanceScratch, distance / length, distanceScratch);
Cartographic.Cartesian3.add(p0, distanceScratch, distanceScratch);
return [distanceScratch.x, distanceScratch.y, distanceScratch.z];
}
PolygonGeometryLibrary.subdivideLineCount = function(p0, p1, minDistance) {
var distance = Cartographic.Cartesian3.distance(p0, p1);
var n = distance / minDistance;
var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
var scratchCartographic0 = new Cartographic.Cartographic();
var scratchCartographic1 = new Cartographic.Cartographic();
var scratchCartographic2 = new Cartographic.Cartographic();
var scratchCartesian0 = new Cartographic.Cartesian3();
PolygonGeometryLibrary.subdivideRhumbLineCount = function(ellipsoid, p0, p1, minDistance) {
var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
var rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid);
var n = rhumb.surfaceDistance / minDistance;
var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
PolygonGeometryLibrary.subdivideLine = function(p0, p1, minDistance, result) {
var numVertices = PolygonGeometryLibrary.subdivideLineCount(p0, p1, minDistance);
var length = Cartographic.Cartesian3.distance(p0, p1);
var distanceBetweenVertices = length / numVertices;
if (!when.defined(result)) {
result = [];
}
var positions = result;
positions.length = numVertices * 3;
var index = 0;
for ( var i = 0; i < numVertices; i++) {
var p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length);
positions[index++] = p[0];
positions[index++] = p[1];
positions[index++] = p[2];
}
return positions;
};
PolygonGeometryLibrary.subdivideRhumbLine = function(ellipsoid, p0, p1, minDistance, result) {
var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
var rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid);
var n = rhumb.surfaceDistance / minDistance;
var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n)));
var numVertices = Math.pow(2, countDivide);
var distanceBetweenVertices = rhumb.surfaceDistance / numVertices;
if (!when.defined(result)) {
result = [];
}
var positions = result;
positions.length = numVertices * 3;
var index = 0;
for ( var i = 0; i < numVertices; i++) {
var c = rhumb.interpolateUsingSurfaceDistance(i * distanceBetweenVertices, scratchCartographic2);
var p = ellipsoid.cartographicToCartesian(c, scratchCartesian0);
positions[index++] = p.x;
positions[index++] = p.y;
positions[index++] = p.z;
}
return positions;
};
var scaleToGeodeticHeightN1 = new Cartographic.Cartesian3();
var scaleToGeodeticHeightN2 = new Cartographic.Cartesian3();
var scaleToGeodeticHeightP1 = new Cartographic.Cartesian3();
var scaleToGeodeticHeightP2 = new Cartographic.Cartesian3();
PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function(geometry, maxHeight, minHeight, ellipsoid, perPositionHeight) {
ellipsoid = when.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84);
var n1 = scaleToGeodeticHeightN1;
var n2 = scaleToGeodeticHeightN2;
var p = scaleToGeodeticHeightP1;
var p2 = scaleToGeodeticHeightP2;
if (when.defined(geometry) && when.defined(geometry.attributes) && when.defined(geometry.attributes.position)) {
var positions = geometry.attributes.position.values;
var length = positions.length / 2;
for ( var i = 0; i < length; i += 3) {
Cartographic.Cartesian3.fromArray(positions, i, p);
ellipsoid.geodeticSurfaceNormal(p, n1);
p2 = ellipsoid.scaleToGeodeticSurface(p, p2);
n2 = Cartographic.Cartesian3.multiplyByScalar(n1, minHeight, n2);
n2 = Cartographic.Cartesian3.add(p2, n2, n2);
positions[i + length] = n2.x;
positions[i + 1 + length] = n2.y;
positions[i + 2 + length] = n2.z;
if (perPositionHeight) {
p2 = Cartographic.Cartesian3.clone(p, p2);
}
n2 = Cartographic.Cartesian3.multiplyByScalar(n1, maxHeight, n2);
n2 = Cartographic.Cartesian3.add(p2, n2, n2);
positions[i] = n2.x;
positions[i + 1] = n2.y;
positions[i + 2] = n2.z;
}
}
return geometry;
};
PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function(polygonHierarchy, scaleToEllipsoidSurface, ellipsoid) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
var polygons = [];
var queue = new Queue();
queue.enqueue(polygonHierarchy);
var i;
var j;
var length;
while (queue.length !== 0) {
var outerNode = queue.dequeue();
var outerRing = outerNode.positions;
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]);
}
}
outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates(outerRing, Cartographic.Cartesian3.equalsEpsilon, true);
if (outerRing.length < 3) {
continue;
}
var numChildren = outerNode.holes ? outerNode.holes.length : 0;
// The outer polygon contains inner polygons
for (i = 0; i < numChildren; i++) {
var hole = outerNode.holes[i];
var holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates(holePositions, Cartographic.Cartesian3.equalsEpsilon, true);
if (holePositions.length < 3) {
continue;
}
polygons.push(holePositions);
var numGrandchildren = 0;
if (when.defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
polygons.push(outerRing);
}
return polygons;
};
var scratchEllipsoidRadii = new Cartographic.Cartesian3(6378137.0,6378137.0,6378137.0);
PolygonGeometryLibrary.polygonsFromHierarchy = function(polygonHierarchy, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
var hierarchy = [];
var polygons = [];
var queue = new Queue();
queue.enqueue(polygonHierarchy);
while (queue.length !== 0) {
var outerNode = queue.dequeue();
var outerRing = outerNode.positions;
var holes = outerNode.holes;
var i;
var length;
var tempOutRing = outerRing.slice();
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], tempOutRing[i]);
}
}
var epsilon;
if(when.defined(ellipsoid) && !Cartographic.Cartesian3.equals(ellipsoid._radii,scratchEllipsoidRadii)){ //判断坐标系是否为WGS84坐标系
epsilon = _Math.CesiumMath.EPSILON7;
}
outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates(tempOutRing, Cartographic.Cartesian3.equalsEpsilon, true, epsilon);
if (outerRing.length < 3) {
continue;
}
var positions2D = projectPointsTo2D(outerRing);
if (!when.defined(positions2D)) {
continue;
}
var holeIndices = [];
var originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(positions2D);
if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) {
positions2D.reverse();
outerRing = outerRing.slice().reverse();
}
var positions = outerRing.slice();
var numChildren = when.defined(holes) ? holes.length : 0;
var polygonHoles = [];
var j;
for (i = 0; i < numChildren; i++) {
var hole = holes[i];
var holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates(holePositions, Cartographic.Cartesian3.equalsEpsilon, true, _Math.CesiumMath.EPSILON7);
if (holePositions.length < 3) {
continue;
}
var holePositions2D = projectPointsTo2D(holePositions);
if (!when.defined(holePositions2D)) {
continue;
}
originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(holePositions2D);
if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) {
holePositions2D.reverse();
holePositions = holePositions.slice().reverse();
}
polygonHoles.push(holePositions);
holeIndices.push(positions.length);
positions = positions.concat(holePositions);
positions2D = positions2D.concat(holePositions2D);
var numGrandchildren = 0;
if (when.defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
hierarchy.push({
outerRing : outerRing,
holes : polygonHoles
});
polygons.push({
positions : positions,
positions2D : positions2D,
holes : holeIndices
});
}
return {
hierarchy : hierarchy,
polygons : polygons
};
};
var computeBoundingRectangleCartesian2 = new Cartesian2.Cartesian2();
var computeBoundingRectangleCartesian3 = new Cartographic.Cartesian3();
var computeBoundingRectangleQuaternion = new Transforms.Quaternion();
var computeBoundingRectangleMatrix3 = new BoundingSphere.Matrix3();
PolygonGeometryLibrary.computeBoundingRectangle = function (planeNormal, projectPointTo2D, positions, angle, result) {
var rotation = Transforms.Quaternion.fromAxisAngle(planeNormal, angle, computeBoundingRectangleQuaternion);
var textureMatrix = BoundingSphere.Matrix3.fromQuaternion(rotation, computeBoundingRectangleMatrix3);
var minX = Number.POSITIVE_INFINITY;
var maxX = Number.NEGATIVE_INFINITY;
var minY = Number.POSITIVE_INFINITY;
var maxY = Number.NEGATIVE_INFINITY;
var length = positions.length;
for ( var i = 0; i < length; ++i) {
var p = Cartographic.Cartesian3.clone(positions[i], computeBoundingRectangleCartesian3);
BoundingSphere.Matrix3.multiplyByVector(textureMatrix, p, p);
var st = projectPointTo2D(p, computeBoundingRectangleCartesian2);
if (when.defined(st)) {
minX = Math.min(minX, st.x);
maxX = Math.max(maxX, st.x);
minY = Math.min(minY, st.y);
maxY = Math.max(maxY, st.y);
}
}
result.x = minX;
result.y = minY;
result.width = maxX - minX;
result.height = maxY - minY;
return result;
};
PolygonGeometryLibrary.createGeometryFromPositions = function(ellipsoid, polygon, granularity, perPositionHeight, vertexFormat, arcType) {
var indices = PolygonPipeline.PolygonPipeline.triangulate(polygon.positions2D, polygon.holes);
/* If polygon is completely unrenderable, just use the first three vertices */
if (indices.length < 3) {
indices = [0, 1, 2];
}
var positions = polygon.positions;
if (perPositionHeight) {
var length = positions.length;
var flattenedPositions = new Array(length * 3);
var index = 0;
for ( var i = 0; i < length; i++) {
var p = positions[i];
flattenedPositions[index++] = p.x;
flattenedPositions[index++] = p.y;
flattenedPositions[index++] = p.z;
}
var geometry = new GeometryAttribute.Geometry({
attributes : {
position : new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : flattenedPositions
})
},
indices : indices,
primitiveType : PrimitiveType.PrimitiveType.TRIANGLES
});
if (vertexFormat.normal) {
return GeometryPipeline.GeometryPipeline.computeNormal(geometry);
}
return geometry;
}
if (arcType === ArcType.ArcType.GEODESIC) {
return PolygonPipeline.PolygonPipeline.computeSubdivision(ellipsoid, positions, indices, granularity);
} else if (arcType === ArcType.ArcType.RHUMB) {
return PolygonPipeline.PolygonPipeline.computeRhumbLineSubdivision(ellipsoid, positions, indices, granularity);
}
};
var computeWallIndicesSubdivided = [];
var p1Scratch = new Cartographic.Cartesian3();
var p2Scratch = new Cartographic.Cartesian3();
PolygonGeometryLibrary.computeWallGeometry = function(positions, ellipsoid, granularity, perPositionHeight, arcType) {
var edgePositions;
var topEdgeLength;
var i;
var p1;
var p2;
var length = positions.length;
var index = 0;
if (!perPositionHeight) {
var minDistance = _Math.CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
var numVertices = 0;
if (arcType === ArcType.ArcType.GEODESIC) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideLineCount(positions[i], positions[(i + 1) % length], minDistance);
}
} else if (arcType === ArcType.ArcType.RHUMB) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount(ellipsoid, positions[i], positions[(i + 1) % length], minDistance);
}
}
topEdgeLength = (numVertices + length) * 3;
edgePositions = new Array(topEdgeLength * 2);
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
var tempPositions;
if (arcType === ArcType.ArcType.GEODESIC) {
tempPositions = PolygonGeometryLibrary.subdivideLine(p1, p2, minDistance, computeWallIndicesSubdivided);
} else if (arcType === ArcType.ArcType.RHUMB) {
tempPositions = PolygonGeometryLibrary.subdivideRhumbLine(ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided);
}
var tempPositionsLength = tempPositions.length;
for (var j = 0; j < tempPositionsLength; ++j, ++index) {
edgePositions[index] = tempPositions[j];
edgePositions[index + topEdgeLength] = tempPositions[j];
}
edgePositions[index] = p2.x;
edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = p2.y;
edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = p2.z;
edgePositions[index + topEdgeLength] = p2.z;
++index;
}
} else {
topEdgeLength = length * 3 * 2;
edgePositions = new Array(topEdgeLength * 2);
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z;
++index;
}
}
length = edgePositions.length;
var indices = IndexDatatype.IndexDatatype.createTypedArray(length / 3, length - positions.length * 6);
var edgeIndex = 0;
length /= 6;
for (i = 0; i < length; i++) {
var UL = i;
var UR = UL + 1;
var LL = UL + length;
var LR = LL + 1;
p1 = Cartographic.Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch);
p2 = Cartographic.Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch);
if (Cartographic.Cartesian3.equalsEpsilon(p1, p2, _Math.CesiumMath.EPSILON10, _Math.CesiumMath.EPSILON10)) {
//skip corner
continue;
}
indices[edgeIndex++] = UL;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = LR;
}
return new GeometryAttribute.Geometry({
attributes : new GeometryAttributes.GeometryAttributes({
position : new GeometryAttribute.GeometryAttribute({
componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute : 3,
values : edgePositions
})
}),
indices : indices,
primitiveType : PrimitiveType.PrimitiveType.TRIANGLES
});
};
exports.PolygonGeometryLibrary = PolygonGeometryLibrary;
});