/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
*/
define(['exports', './when-8d13db60', './Check-70bec281'], function (exports, when, Check) { 'use strict';
/*
I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
so it's better encapsulated. Now you can have multiple random number generators
and they won't stomp all over eachother's state.
If you want to use this as a substitute for Math.random(), use the random()
method like so:
var m = new MersenneTwister();
var randomNumber = m.random();
You can also call the other genrand_{foo}() methods on the instance.
If you want to use a specific seed in order to get a repeatable random
sequence, pass an integer into the constructor:
var m = new MersenneTwister(123);
and that will always produce the same random sequence.
Sean McCullough (banksean@gmail.com)
*/
/*
A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
*/
/**
@license
mersenne-twister.js - https://gist.github.com/banksean/300494
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
var MersenneTwister = function(seed) {
if (seed == undefined) {
seed = new Date().getTime();
}
/* Period parameters */
this.N = 624;
this.M = 397;
this.MATRIX_A = 0x9908b0df; /* constant vector a */
this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
this.LOWER_MASK = 0x7fffffff; /* least significant r bits */
this.mt = new Array(this.N); /* the array for the state vector */
this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */
this.init_genrand(seed);
};
/* initializes mt[N] with a seed */
MersenneTwister.prototype.init_genrand = function(s) {
this.mt[0] = s >>> 0;
for (this.mti=1; this.mti Special cases:
*
*
*
value
.
*/
CesiumMath.sinh = when.defaultValue(Math.sinh, function sinh(value) {
return (Math.exp(value) - Math.exp(-value)) / 2.0;
});
/**
* Returns the hyperbolic cosine of a number.
* The hyperbolic cosine of value is defined to be
* (ex + e-x)/2.0
* where e is Euler's number, approximately 2.71828183.
*
* Special cases: *
value
.
*/
CesiumMath.cosh = when.defaultValue(Math.cosh, function cosh(value) {
return (Math.exp(value) + Math.exp(-value)) / 2.0;
});
/**
* Computes the linear interpolation of two values.
*
* @param {Number} p The start value to interpolate.
* @param {Number} q The end value to interpolate.
* @param {Number} time The time of interpolation generally in the range [0.0, 1.0]
.
* @returns {Number} The linearly interpolated value.
*
* @example
* var n = Cesium.Math.lerp(0.0, 2.0, 0.5); // returns 1.0
*/
CesiumMath.lerp = function(p, q, time) {
return ((1.0 - time) * p) + (time * q);
};
/**
* pi
*
* @type {Number}
* @constant
*/
CesiumMath.PI = Math.PI;
/**
* 1/pi
*
* @type {Number}
* @constant
*/
CesiumMath.ONE_OVER_PI = 1.0 / Math.PI;
/**
* pi/2
*
* @type {Number}
* @constant
*/
CesiumMath.PI_OVER_TWO = Math.PI / 2.0;
/**
* pi/3
*
* @type {Number}
* @constant
*/
CesiumMath.PI_OVER_THREE = Math.PI / 3.0;
/**
* pi/4
*
* @type {Number}
* @constant
*/
CesiumMath.PI_OVER_FOUR = Math.PI / 4.0;
/**
* pi/6
*
* @type {Number}
* @constant
*/
CesiumMath.PI_OVER_SIX = Math.PI / 6.0;
/**
* 3pi/2
*
* @type {Number}
* @constant
*/
CesiumMath.THREE_PI_OVER_TWO = 3.0 * Math.PI / 2.0;
/**
* 2pi
*
* @type {Number}
* @constant
*/
CesiumMath.TWO_PI = 2.0 * Math.PI;
/**
* 1/2pi
*
* @type {Number}
* @constant
*/
CesiumMath.ONE_OVER_TWO_PI = 1.0 / (2.0 * Math.PI);
/**
* The number of radians in a degree.
*
* @type {Number}
* @constant
* @default Math.PI / 180.0
*/
CesiumMath.RADIANS_PER_DEGREE = Math.PI / 180.0;
/**
* The number of degrees in a radian.
*
* @type {Number}
* @constant
* @default 180.0 / Math.PI
*/
CesiumMath.DEGREES_PER_RADIAN = 180.0 / Math.PI;
/**
* The number of radians in an arc second.
*
* @type {Number}
* @constant
* @default {@link CesiumMath.RADIANS_PER_DEGREE} / 3600.0
*/
CesiumMath.RADIANS_PER_ARCSECOND = CesiumMath.RADIANS_PER_DEGREE / 3600.0;
/**
* Converts degrees to radians.
* @param {Number} degrees The angle to convert in degrees.
* @returns {Number} The corresponding angle in radians.
*/
CesiumMath.toRadians = function(degrees) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(degrees)) {
throw new Check.DeveloperError('degrees is required.');
}
//>>includeEnd('debug');
return degrees * CesiumMath.RADIANS_PER_DEGREE;
};
/**
* Converts radians to degrees.
* @param {Number} radians The angle to convert in radians.
* @returns {Number} The corresponding angle in degrees.
*/
CesiumMath.toDegrees = function(radians) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(radians)) {
throw new Check.DeveloperError('radians is required.');
}
//>>includeEnd('debug');
return radians * CesiumMath.DEGREES_PER_RADIAN;
};
/**
* Converts a longitude value, in radians, to the range [-Math.PI
, Math.PI
).
*
* @param {Number} angle The longitude value, in radians, to convert to the range [-Math.PI
, Math.PI
).
* @returns {Number} The equivalent longitude value in the range [-Math.PI
, Math.PI
).
*
* @example
* // Convert 270 degrees to -90 degrees longitude
* var longitude = Cesium.Math.convertLongitudeRange(Cesium.Math.toRadians(270.0));
*/
CesiumMath.convertLongitudeRange = function(angle) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(angle)) {
throw new Check.DeveloperError('angle is required.');
}
//>>includeEnd('debug');
var twoPi = CesiumMath.TWO_PI;
var simplified = angle - Math.floor(angle / twoPi) * twoPi;
if (simplified < -Math.PI) {
return simplified + twoPi;
}
if (simplified >= Math.PI) {
return simplified - twoPi;
}
return simplified;
};
/**
* Convenience function that clamps a latitude value, in radians, to the range [-Math.PI/2
, Math.PI/2
).
* Useful for sanitizing data before use in objects requiring correct range.
*
* @param {Number} angle The latitude value, in radians, to clamp to the range [-Math.PI/2
, Math.PI/2
).
* @returns {Number} The latitude value clamped to the range [-Math.PI/2
, Math.PI/2
).
*
* @example
* // Clamp 108 degrees latitude to 90 degrees latitude
* var latitude = Cesium.Math.clampToLatitudeRange(Cesium.Math.toRadians(108.0));
*/
CesiumMath.clampToLatitudeRange = function(angle) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(angle)) {
throw new Check.DeveloperError('angle is required.');
}
//>>includeEnd('debug');
return CesiumMath.clamp(angle, -1*CesiumMath.PI_OVER_TWO, CesiumMath.PI_OVER_TWO);
};
/**
* Produces an angle in the range -Pi <= angle <= Pi which is equivalent to the provided angle.
*
* @param {Number} angle in radians
* @returns {Number} The angle in the range [-CesiumMath.PI
, CesiumMath.PI
].
*/
CesiumMath.negativePiToPi = function(angle) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(angle)) {
throw new Check.DeveloperError('angle is required.');
}
//>>includeEnd('debug');
return CesiumMath.zeroToTwoPi(angle + CesiumMath.PI) - CesiumMath.PI;
};
/**
* Produces an angle in the range 0 <= angle <= 2Pi which is equivalent to the provided angle.
*
* @param {Number} angle in radians
* @returns {Number} The angle in the range [0, CesiumMath.TWO_PI
].
*/
CesiumMath.zeroToTwoPi = function(angle) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(angle)) {
throw new Check.DeveloperError('angle is required.');
}
//>>includeEnd('debug');
var mod = CesiumMath.mod(angle, CesiumMath.TWO_PI);
if (Math.abs(mod) < CesiumMath.EPSILON14 && Math.abs(angle) > CesiumMath.EPSILON14) {
return CesiumMath.TWO_PI;
}
return mod;
};
/**
* The modulo operation that also works for negative dividends.
*
* @param {Number} m The dividend.
* @param {Number} n The divisor.
* @returns {Number} The remainder.
*/
CesiumMath.mod = function(m, n) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(m)) {
throw new Check.DeveloperError('m is required.');
}
if (!when.defined(n)) {
throw new Check.DeveloperError('n is required.');
}
//>>includeEnd('debug');
return ((m % n) + n) % n;
};
/**
* Determines if two values are equal using an absolute or relative tolerance test. This is useful
* to avoid problems due to roundoff error when comparing floating-point values directly. The values are
* first compared using an absolute tolerance test. If that fails, a relative tolerance test is performed.
* Use this test if you are unsure of the magnitudes of left and right.
*
* @param {Number} left The first value to compare.
* @param {Number} right The other value to compare.
* @param {Number} relativeEpsilon The maximum inclusive delta between left
and right
for the relative tolerance test.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The maximum inclusive delta between left
and right
for the absolute tolerance test.
* @returns {Boolean} true
if the values are equal within the epsilon; otherwise, false
.
*
* @example
* var a = Cesium.Math.equalsEpsilon(0.0, 0.01, Cesium.Math.EPSILON2); // true
* var b = Cesium.Math.equalsEpsilon(0.0, 0.1, Cesium.Math.EPSILON2); // false
* var c = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON7); // true
* var d = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON9); // false
*/
CesiumMath.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(left)) {
throw new Check.DeveloperError('left is required.');
}
if (!when.defined(right)) {
throw new Check.DeveloperError('right is required.');
}
if (!when.defined(relativeEpsilon)) {
throw new Check.DeveloperError('relativeEpsilon is required.');
}
//>>includeEnd('debug');
absoluteEpsilon = when.defaultValue(absoluteEpsilon, relativeEpsilon);
var absDiff = Math.abs(left - right);
return absDiff <= absoluteEpsilon || absDiff <= relativeEpsilon * Math.max(Math.abs(left), Math.abs(right));
};
/**
* Determines if the left value is less than the right value. If the two values are within
* absoluteEpsilon
of each other, they are considered equal and this function returns false.
*
* @param {Number} left The first number to compare.
* @param {Number} right The second number to compare.
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
* @returns {Boolean} true
if left
is less than right
by more than
* absoluteEpsilon. false
if left
is greater or if the two
* values are nearly equal.
*/
CesiumMath.lessThan = function(left, right, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(left)) {
throw new Check.DeveloperError('first is required.');
}
if (!when.defined(right)) {
throw new Check.DeveloperError('second is required.');
}
if (!when.defined(absoluteEpsilon)) {
throw new Check.DeveloperError('relativeEpsilon is required.');
}
//>>includeEnd('debug');
return left - right < -absoluteEpsilon;
};
/**
* Determines if the left value is less than or equal to the right value. If the two values are within
* absoluteEpsilon
of each other, they are considered equal and this function returns true.
*
* @param {Number} left The first number to compare.
* @param {Number} right The second number to compare.
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
* @returns {Boolean} true
if left
is less than right
or if the
* the values are nearly equal.
*/
CesiumMath.lessThanOrEquals = function(left, right, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(left)) {
throw new Check.DeveloperError('first is required.');
}
if (!when.defined(right)) {
throw new Check.DeveloperError('second is required.');
}
if (!when.defined(absoluteEpsilon)) {
throw new Check.DeveloperError('relativeEpsilon is required.');
}
//>>includeEnd('debug');
return left - right < absoluteEpsilon;
};
/**
* Determines if the left value is greater the right value. If the two values are within
* absoluteEpsilon
of each other, they are considered equal and this function returns false.
*
* @param {Number} left The first number to compare.
* @param {Number} right The second number to compare.
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
* @returns {Boolean} true
if left
is greater than right
by more than
* absoluteEpsilon. false
if left
is less or if the two
* values are nearly equal.
*/
CesiumMath.greaterThan = function(left, right, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(left)) {
throw new Check.DeveloperError('first is required.');
}
if (!when.defined(right)) {
throw new Check.DeveloperError('second is required.');
}
if (!when.defined(absoluteEpsilon)) {
throw new Check.DeveloperError('relativeEpsilon is required.');
}
//>>includeEnd('debug');
return left - right > absoluteEpsilon;
};
/**
* Determines if the left value is greater than or equal to the right value. If the two values are within
* absoluteEpsilon
of each other, they are considered equal and this function returns true.
*
* @param {Number} left The first number to compare.
* @param {Number} right The second number to compare.
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
* @returns {Boolean} true
if left
is greater than right
or if the
* the values are nearly equal.
*/
CesiumMath.greaterThanOrEquals = function(left, right, absoluteEpsilon) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(left)) {
throw new Check.DeveloperError('first is required.');
}
if (!when.defined(right)) {
throw new Check.DeveloperError('second is required.');
}
if (!when.defined(absoluteEpsilon)) {
throw new Check.DeveloperError('relativeEpsilon is required.');
}
//>>includeEnd('debug');
return left - right > -absoluteEpsilon;
};
var factorials = [1];
/**
* Computes the factorial of the provided number.
*
* @param {Number} n The number whose factorial is to be computed.
* @returns {Number} The factorial of the provided number or undefined if the number is less than 0.
*
* @exception {DeveloperError} A number greater than or equal to 0 is required.
*
*
* @example
* //Compute 7!, which is equal to 5040
* var computedFactorial = Cesium.Math.factorial(7);
*
* @see {@link http://en.wikipedia.org/wiki/Factorial|Factorial on Wikipedia}
*/
CesiumMath.factorial = function(n) {
//>>includeStart('debug', pragmas.debug);
if (typeof n !== 'number' || n < 0) {
throw new Check.DeveloperError('A number greater than or equal to 0 is required.');
}
//>>includeEnd('debug');
var length = factorials.length;
if (n >= length) {
var sum = factorials[length - 1];
for (var i = length; i <= n; i++) {
var next = sum * i;
factorials.push(next);
sum = next;
}
}
return factorials[n];
};
/**
* Increments a number with a wrapping to a minimum value if the number exceeds the maximum value.
*
* @param {Number} [n] The number to be incremented.
* @param {Number} [maximumValue] The maximum incremented value before rolling over to the minimum value.
* @param {Number} [minimumValue=0.0] The number reset to after the maximum value has been exceeded.
* @returns {Number} The incremented number.
*
* @exception {DeveloperError} Maximum value must be greater than minimum value.
*
* @example
* var n = Cesium.Math.incrementWrap(5, 10, 0); // returns 6
* var n = Cesium.Math.incrementWrap(10, 10, 0); // returns 0
*/
CesiumMath.incrementWrap = function(n, maximumValue, minimumValue) {
minimumValue = when.defaultValue(minimumValue, 0.0);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(n)) {
throw new Check.DeveloperError('n is required.');
}
if (maximumValue <= minimumValue) {
throw new Check.DeveloperError('maximumValue must be greater than minimumValue.');
}
//>>includeEnd('debug');
++n;
if (n > maximumValue) {
n = minimumValue;
}
return n;
};
/**
* Determines if a positive integer is a power of two.
*
* @param {Number} n The positive integer to test.
* @returns {Boolean} true
if the number if a power of two; otherwise, false
.
*
* @exception {DeveloperError} A number greater than or equal to 0 is required.
*
* @example
* var t = Cesium.Math.isPowerOfTwo(16); // true
* var f = Cesium.Math.isPowerOfTwo(20); // false
*/
CesiumMath.isPowerOfTwo = function(n) {
//>>includeStart('debug', pragmas.debug);
if (typeof n !== 'number' || n < 0) {
throw new Check.DeveloperError('A number greater than or equal to 0 is required.');
}
//>>includeEnd('debug');
return (n !== 0) && ((n & (n - 1)) === 0);
};
/**
* Computes the next power-of-two integer greater than or equal to the provided positive integer.
*
* @param {Number} n The positive integer to test.
* @returns {Number} The next power-of-two integer.
*
* @exception {DeveloperError} A number greater than or equal to 0 is required.
*
* @example
* var n = Cesium.Math.nextPowerOfTwo(29); // 32
* var m = Cesium.Math.nextPowerOfTwo(32); // 32
*/
CesiumMath.nextPowerOfTwo = function(n) {
//>>includeStart('debug', pragmas.debug);
if (typeof n !== 'number' || n < 0) {
throw new Check.DeveloperError('A number greater than or equal to 0 is required.');
}
//>>includeEnd('debug');
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
++n;
return n;
};
/**
* Constraint a value to lie between two values.
*
* @param {Number} value The value to constrain.
* @param {Number} min The minimum value.
* @param {Number} max The maximum value.
* @returns {Number} The value clamped so that min <= value <= max.
*/
CesiumMath.clamp = function(value, min, max) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new Check.DeveloperError('value is required');
}
if (!when.defined(min)) {
throw new Check.DeveloperError('min is required.');
}
if (!when.defined(max)) {
throw new Check.DeveloperError('max is required.');
}
//>>includeEnd('debug');
return value < min ? min : value > max ? max : value;
};
var randomNumberGenerator = new MersenneTwister();
/**
* Sets the seed used by the random number generator
* in {@link CesiumMath#nextRandomNumber}.
*
* @param {Number} seed An integer used as the seed.
*/
CesiumMath.setRandomNumberSeed = function(seed) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(seed)) {
throw new Check.DeveloperError('seed is required.');
}
//>>includeEnd('debug');
randomNumberGenerator = new MersenneTwister(seed);
};
/**
* Generates a random floating point number in the range of [0.0, 1.0)
* using a Mersenne twister.
*
* @returns {Number} A random number in the range of [0.0, 1.0).
*
* @see CesiumMath.setRandomNumberSeed
* @see {@link http://en.wikipedia.org/wiki/Mersenne_twister|Mersenne twister on Wikipedia}
*/
CesiumMath.nextRandomNumber = function() {
return randomNumberGenerator.random();
};
/**
* Generates a random number between two numbers.
*
* @param {Number} min The minimum value.
* @param {Number} max The maximum value.
* @returns {Number} A random number between the min and max.
*/
CesiumMath.randomBetween = function(min, max) {
return CesiumMath.nextRandomNumber() * (max - min) + min;
};
/**
* Computes Math.acos(value)
, but first clamps value
to the range [-1.0, 1.0]
* so that the function will never return NaN.
*
* @param {Number} value The value for which to compute acos.
* @returns {Number} The acos of the value if the value is in the range [-1.0, 1.0], or the acos of -1.0 or 1.0,
* whichever is closer, if the value is outside the range.
*/
CesiumMath.acosClamped = function(value) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new Check.DeveloperError('value is required.');
}
//>>includeEnd('debug');
return Math.acos(CesiumMath.clamp(value, -1.0, 1.0));
};
/**
* Computes Math.asin(value)
, but first clamps value
to the range [-1.0, 1.0]
* so that the function will never return NaN.
*
* @param {Number} value The value for which to compute asin.
* @returns {Number} The asin of the value if the value is in the range [-1.0, 1.0], or the asin of -1.0 or 1.0,
* whichever is closer, if the value is outside the range.
*/
CesiumMath.asinClamped = function(value) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new Check.DeveloperError('value is required.');
}
//>>includeEnd('debug');
return Math.asin(CesiumMath.clamp(value, -1.0, 1.0));
};
/**
* Finds the chord length between two points given the circle's radius and the angle between the points.
*
* @param {Number} angle The angle between the two points.
* @param {Number} radius The radius of the circle.
* @returns {Number} The chord length.
*/
CesiumMath.chordLength = function(angle, radius) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(angle)) {
throw new Check.DeveloperError('angle is required.');
}
if (!when.defined(radius)) {
throw new Check.DeveloperError('radius is required.');
}
//>>includeEnd('debug');
return 2.0 * radius * Math.sin(angle * 0.5);
};
/**
* Finds the logarithm of a number to a base.
*
* @param {Number} number The number.
* @param {Number} base The base.
* @returns {Number} The result.
*/
CesiumMath.logBase = function(number, base) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(number)) {
throw new Check.DeveloperError('number is required.');
}
if (!when.defined(base)) {
throw new Check.DeveloperError('base is required.');
}
//>>includeEnd('debug');
return Math.log(number) / Math.log(base);
};
/**
* Finds the cube root of a number.
* Returns NaN if number
is not provided.
*
* @function
* @param {Number} [number] The number.
* @returns {Number} The result.
*/
CesiumMath.cbrt = when.defaultValue(Math.cbrt, function cbrt(number) {
var result = Math.pow(Math.abs(number), 1.0 / 3.0);
return number < 0.0 ? -result : result;
});
/**
* Finds the base 2 logarithm of a number.
*
* @function
* @param {Number} number The number.
* @returns {Number} The result.
*/
CesiumMath.log2 = when.defaultValue(Math.log2, function log2(number) {
return Math.log(number) * Math.LOG2E;
});
/**
* @private
*/
CesiumMath.fog = function(distanceToCamera, density) {
var scalar = distanceToCamera * density;
return 1.0 - Math.exp(-(scalar * scalar));
};
/**
* Computes a fast approximation of Atan for input in the range [-1, 1].
*
* Based on Michal Drobot's approximation from ShaderFastLibs,
* which in turn is based on "Efficient approximations for the arctangent function,"
* Rajan, S. Sichun Wang Inkol, R. Joyal, A., May 2006.
* Adapted from ShaderFastLibs under MIT License.
*
* @param {Number} x An input number in the range [-1, 1]
* @returns {Number} An approximation of atan(x)
*/
CesiumMath.fastApproximateAtan = function(x) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('x', x);
//>>includeEnd('debug');
return x * (-0.1784 * Math.abs(x) - 0.0663 * x * x + 1.0301);
};
/**
* Computes a fast approximation of Atan2(x, y) for arbitrary input scalars.
*
* Range reduction math based on nvidia's cg reference implementation: http://developer.download.nvidia.com/cg/atan2.html
*
* @param {Number} x An input number that isn't zero if y is zero.
* @param {Number} y An input number that isn't zero if x is zero.
* @returns {Number} An approximation of atan2(x, y)
*/
CesiumMath.fastApproximateAtan2 = function(x, y) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('x', x);
Check.Check.typeOf.number('y', y);
//>>includeEnd('debug');
// atan approximations are usually only reliable over [-1, 1]
// So reduce the range by flipping whether x or y is on top based on which is bigger.
var opposite;
var adjacent;
var t = Math.abs(x); // t used as swap and atan result.
opposite = Math.abs(y);
adjacent = Math.max(t, opposite);
opposite = Math.min(t, opposite);
var oppositeOverAdjacent = opposite / adjacent;
//>>includeStart('debug', pragmas.debug);
if (isNaN(oppositeOverAdjacent)) {
throw new Check.DeveloperError('either x or y must be nonzero');
}
//>>includeEnd('debug');
t = CesiumMath.fastApproximateAtan(oppositeOverAdjacent);
// Undo range reduction
t = Math.abs(y) > Math.abs(x) ? CesiumMath.PI_OVER_TWO - t : t;
t = x < 0.0 ? CesiumMath.PI - t : t;
t = y < 0.0 ? -t : t;
return t;
};
exports.CesiumMath = CesiumMath;
});