/** * Cesium - https://github.com/AnalyticalGraphicsInc/cesium * * Copyright 2011-2017 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-fe4be337', './Cartesian2-85064f09', './Cartesian4-5af5bb24', './RuntimeError-ba10bc3e'], function (exports, when, Check, _Math, Cartographic, Cartesian2, Cartesian4, RuntimeError) { 'use strict'; /** * A simple map projection where longitude and latitude are linearly mapped to X and Y by multiplying * them by the {@link Ellipsoid#maximumRadius}. This projection * is commonly known as geographic, equirectangular, equidistant cylindrical, or plate carrée. It * is also known as EPSG:4326. * * @alias GeographicProjection * @constructor * * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid. * * @see WebMercatorProjection */ function GeographicProjection(ellipsoid) { this._ellipsoid = when.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84); this._semimajorAxis = this._ellipsoid.maximumRadius; this._oneOverSemimajorAxis = 1.0 / this._semimajorAxis; } Object.defineProperties(GeographicProjection.prototype, { /** * Gets the {@link Ellipsoid}. * * @memberof GeographicProjection.prototype * * @type {Ellipsoid} * @readonly */ ellipsoid : { get : function() { return this._ellipsoid; } } }); /** * Projects a set of {@link Cartographic} coordinates, in radians, to map coordinates, in meters. * X and Y are the longitude and latitude, respectively, multiplied by the maximum radius of the * ellipsoid. Z is the unmodified height. * * @param {Cartographic} cartographic The coordinates to project. * @param {Cartesian3} [result] An instance into which to copy the result. If this parameter is * undefined, a new instance is created and returned. * @returns {Cartesian3} The projected coordinates. If the result parameter is not undefined, the * coordinates are copied there and that instance is returned. Otherwise, a new instance is * created and returned. */ GeographicProjection.prototype.project = function(cartographic, result) { // Actually this is the special case of equidistant cylindrical called the plate carree var semimajorAxis = this._semimajorAxis; var x = cartographic.longitude * semimajorAxis; var y = cartographic.latitude * semimajorAxis; var z = cartographic.height; if (!when.defined(result)) { return new Cartographic.Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Unprojects a set of projected {@link Cartesian3} coordinates, in meters, to {@link Cartographic} * coordinates, in radians. Longitude and Latitude are the X and Y coordinates, respectively, * divided by the maximum radius of the ellipsoid. Height is the unmodified Z coordinate. * * @param {Cartesian3} cartesian The Cartesian position to unproject with height (z) in meters. * @param {Cartographic} [result] An instance into which to copy the result. If this parameter is * undefined, a new instance is created and returned. * @returns {Cartographic} The unprojected coordinates. If the result parameter is not undefined, the * coordinates are copied there and that instance is returned. Otherwise, a new instance is * created and returned. */ GeographicProjection.prototype.unproject = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(cartesian)) { throw new Check.DeveloperError('cartesian is required'); } //>>includeEnd('debug'); var oneOverEarthSemimajorAxis = this._oneOverSemimajorAxis; var longitude = cartesian.x * oneOverEarthSemimajorAxis; var latitude = cartesian.y * oneOverEarthSemimajorAxis; var height = cartesian.z; if (!when.defined(result)) { return new Cartographic.Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * This enumerated type is used in determining where, relative to the frustum, an * object is located. The object can either be fully contained within the frustum (INSIDE), * partially inside the frustum and partially outside (INTERSECTING), or somwhere entirely * outside of the frustum's 6 planes (OUTSIDE). * * @exports Intersect */ var Intersect = { /** * Represents that an object is not contained within the frustum. * * @type {Number} * @constant */ OUTSIDE : -1, /** * Represents that an object intersects one of the frustum's planes. * * @type {Number} * @constant */ INTERSECTING : 0, /** * Represents that an object is fully within the frustum. * * @type {Number} * @constant */ INSIDE : 1 }; var Intersect$1 = Object.freeze(Intersect); /** * Represents the closed interval [start, stop]. * @alias Interval * @constructor * * @param {Number} [start=0.0] The beginning of the interval. * @param {Number} [stop=0.0] The end of the interval. */ function Interval(start, stop) { /** * The beginning of the interval. * @type {Number} * @default 0.0 */ this.start = when.defaultValue(start, 0.0); /** * The end of the interval. * @type {Number} * @default 0.0 */ this.stop = when.defaultValue(stop, 0.0); } /** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix2 * @see Matrix4 */ function Matrix3(column0Row0, column1Row0, column2Row0, column0Row1, column1Row1, column2Row1, column0Row2, column1Row2, column2Row2) { this[0] = when.defaultValue(column0Row0, 0.0); this[1] = when.defaultValue(column0Row1, 0.0); this[2] = when.defaultValue(column0Row2, 0.0); this[3] = when.defaultValue(column1Row0, 0.0); this[4] = when.defaultValue(column1Row1, 0.0); this[5] = when.defaultValue(column1Row2, 0.0); this[6] = when.defaultValue(column2Row0, 0.0); this[7] = when.defaultValue(column2Row1, 0.0); this[8] = when.defaultValue(column2Row2, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix3.packedLength = 9; /** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix3.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; return result; }; /** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix3.clone = function(matrix, result) { if (!when.defined(matrix)) { return undefined; } if (!when.defined(result)) { return new Matrix3(matrix[0], matrix[3], matrix[6], matrix[1], matrix[4], matrix[7], matrix[2], matrix[5], matrix[8]); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Creates a Matrix3 from 9 consecutive elements in an array. * * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * var v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * var m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * var m2 = Cesium.Matrix3.fromArray(v2, 2); */ Matrix3.fromArray = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex]; result[1] = array[startingIndex + 1]; result[2] = array[startingIndex + 2]; result[3] = array[startingIndex + 3]; result[4] = array[startingIndex + 4]; result[5] = array[startingIndex + 5]; result[6] = array[startingIndex + 6]; result[7] = array[startingIndex + 7]; result[8] = array[startingIndex + 8]; return result; }; /** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromColumnMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); return Matrix3.clone(values, result); }; /** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromRowMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3(values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8]); } result[0] = values[0]; result[1] = values[3]; result[2] = values[6]; result[3] = values[1]; result[4] = values[4]; result[5] = values[7]; result[6] = values[2]; result[7] = values[5]; result[8] = values[8]; return result; }; /** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */ Matrix3.fromQuaternion = function(quaternion, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('quaternion', quaternion); //>>includeEnd('debug'); var x2 = quaternion.x * quaternion.x; var xy = quaternion.x * quaternion.y; var xz = quaternion.x * quaternion.z; var xw = quaternion.x * quaternion.w; var y2 = quaternion.y * quaternion.y; var yz = quaternion.y * quaternion.z; var yw = quaternion.y * quaternion.w; var z2 = quaternion.z * quaternion.z; var zw = quaternion.z * quaternion.w; var w2 = quaternion.w * quaternion.w; var m00 = x2 - y2 - z2 + w2; var m01 = 2.0 * (xy - zw); var m02 = 2.0 * (xz + yw); var m10 = 2.0 * (xy + zw); var m11 = -x2 + y2 - z2 + w2; var m12 = 2.0 * (yz - xw); var m20 = 2.0 * (xz - yw); var m21 = 2.0 * (yz + xw); var m22 = -x2 - y2 + z2 + w2; if (!when.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */ Matrix3.fromHeadingPitchRoll = function(headingPitchRoll, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('headingPitchRoll', headingPitchRoll); //>>includeEnd('debug'); var cosTheta = Math.cos(-headingPitchRoll.pitch); var cosPsi = Math.cos(-headingPitchRoll.heading); var cosPhi = Math.cos(headingPitchRoll.roll); var sinTheta = Math.sin(-headingPitchRoll.pitch); var sinPsi = Math.sin(-headingPitchRoll.heading); var sinPhi = Math.sin(headingPitchRoll.roll); var m00 = cosTheta * cosPsi; var m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi; var m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi; var m10 = cosTheta * sinPsi; var m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi; var m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi; var m20 = -sinTheta; var m21 = sinPhi * cosTheta; var m22 = cosPhi * cosTheta; if (!when.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0] * // [0.0, 8.0, 0.0] * // [0.0, 0.0, 9.0] * var m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('scale', scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3( scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale.y; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale.z; return result; }; /** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0] * // [0.0, 2.0, 0.0] * // [0.0, 0.0, 2.0] * var m = Cesium.Matrix3.fromUniformScale(2.0); */ Matrix3.fromUniformScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('scale', scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3( scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale; return result; }; /** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [0.0, -9.0, 8.0] * // [9.0, 0.0, -7.0] * // [-8.0, 7.0, 0.0] * var m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromCrossProduct = function(vector, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('vector', vector); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3( 0.0, -vector.z, vector.y, vector.z, 0.0, -vector.x, -vector.y, vector.x, 0.0); } result[0] = 0.0; result[1] = vector.z; result[2] = -vector.y; result[3] = -vector.z; result[4] = 0.0; result[5] = vector.x; result[6] = vector.y; result[7] = -vector.x; result[8] = 0.0; return result; }; /** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationX = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( 1.0, 0.0, 0.0, 0.0, cosAngle, -sinAngle, 0.0, sinAngle, cosAngle); } result[0] = 1.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = cosAngle; result[5] = sinAngle; result[6] = 0.0; result[7] = -sinAngle; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationY = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( cosAngle, 0.0, sinAngle, 0.0, 1.0, 0.0, -sinAngle, 0.0, cosAngle); } result[0] = cosAngle; result[1] = 0.0; result[2] = -sinAngle; result[3] = 0.0; result[4] = 1.0; result[5] = 0.0; result[6] = sinAngle; result[7] = 0.0; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationZ = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( cosAngle, -sinAngle, 0.0, sinAngle, cosAngle, 0.0, 0.0, 0.0, 1.0); } result[0] = cosAngle; result[1] = sinAngle; result[2] = 0.0; result[3] = -sinAngle; result[4] = cosAngle; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 1.0; return result; }; /** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix3.toArray = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); if (!when.defined(result)) { return [matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8]]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * var myMatrix = new Cesium.Matrix3(); * var column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * var column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix3.getElementIndex = function(column, row) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals('row', row, 0); Check.Check.typeOf.number.lessThanOrEquals('row', row, 2); Check.Check.typeOf.number.greaterThanOrEquals('column', column, 0); Check.Check.typeOf.number.lessThanOrEquals('column', column, 2); //>>includeEnd('debug'); return column * 3 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getColumn = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var startIndex = index * 3; var x = matrix[startIndex]; var y = matrix[startIndex + 1]; var z = matrix[startIndex + 2]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setColumn = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); var startIndex = index * 3; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getRow = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var x = matrix[index]; var y = matrix[index + 3]; var z = matrix[index + 6]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setRow = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); result[index] = cartesian.x; result[index + 3] = cartesian.y; result[index + 6] = cartesian.z; return result; }; var scratchColumn = new Cartographic.Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.getScale = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn)); result.y = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn)); result.z = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn)); return result; }; var scratchScale = new Cartographic.Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix3.getMaximumScale = function(matrix) { Matrix3.getScale(matrix, scratchScale); return Cartographic.Cartesian3.maximumComponent(scratchScale); }; /** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiply = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2]; var column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2]; var column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2]; var column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5]; var column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5]; var column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5]; var column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8]; var column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8]; var column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.multiplyByVector = function(matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var vX = cartesian.x; var vY = cartesian.y; var vZ = cartesian.z; var x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ; var y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ; var z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiplyByScalar = function(matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Cartesian3} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.fromScale * @see Matrix3.multiplyByUniformScale */ Matrix3.multiplyByScale = function(matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('scale', scale); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.x; result[3] = matrix[3] * scale.y; result[4] = matrix[4] * scale.y; result[5] = matrix[5] * scale.y; result[6] = matrix[6] * scale.z; result[7] = matrix[7] * scale.z; result[8] = matrix[8] * scale.z; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.negate = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.transpose = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = matrix[0]; var column0Row1 = matrix[3]; var column0Row2 = matrix[6]; var column1Row0 = matrix[1]; var column1Row1 = matrix[4]; var column1Row2 = matrix[7]; var column2Row0 = matrix[2]; var column2Row1 = matrix[5]; var column2Row2 = matrix[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; var UNIT = new Cartographic.Cartesian3(1, 1, 1); /** * Extracts the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter */ Matrix3.getRotation = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var inverseScale = Cartographic.Cartesian3.divideComponents(UNIT, Matrix3.getScale(matrix, scratchScale), scratchScale); result = Matrix3.multiplyByScale(matrix, inverseScale, result); return result; }; function computeFrobeniusNorm(matrix) { var norm = 0.0; for (var i = 0; i < 9; ++i) { var temp = matrix[i]; norm += temp * temp; } return Math.sqrt(norm); } var rowVal = [1, 0, 0]; var colVal = [2, 2, 1]; function offDiagonalFrobeniusNorm(matrix) { // Computes the "off-diagonal" Frobenius norm. // Assumes matrix is symmetric. var norm = 0.0; for (var i = 0; i < 3; ++i) { var temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]; norm += 2.0 * temp * temp; } return Math.sqrt(norm); } function shurDecomposition(matrix, result) { // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.2 The 2by2 Symmetric Schur Decomposition. // // The routine takes a matrix, which is assumed to be symmetric, and // finds the largest off-diagonal term, and then creates // a matrix (result) which can be used to help reduce it var tolerance = _Math.CesiumMath.EPSILON15; var maxDiagonal = 0.0; var rotAxis = 1; // find pivot (rotAxis) based on max diagonal of matrix for (var i = 0; i < 3; ++i) { var temp = Math.abs(matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]); if (temp > maxDiagonal) { rotAxis = i; maxDiagonal = temp; } } var c = 1.0; var s = 0.0; var p = rowVal[rotAxis]; var q = colVal[rotAxis]; if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) { var qq = matrix[Matrix3.getElementIndex(q, q)]; var pp = matrix[Matrix3.getElementIndex(p, p)]; var qp = matrix[Matrix3.getElementIndex(q, p)]; var tau = (qq - pp) / 2.0 / qp; var t; if (tau < 0.0) { t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau)); } else { t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau)); } c = 1.0 / Math.sqrt(1.0 + t * t); s = t * c; } result = Matrix3.clone(Matrix3.IDENTITY, result); result[Matrix3.getElementIndex(p, p)] = result[Matrix3.getElementIndex(q, q)] = c; result[Matrix3.getElementIndex(q, p)] = s; result[Matrix3.getElementIndex(p, q)] = -s; return result; } var jMatrix = new Matrix3(); var jMatrixTranspose = new Matrix3(); /** * Computes the eigenvectors and eigenvalues of a symmetric matrix. *

* Returns a diagonal matrix and unitary matrix such that: * matrix = unitary matrix * diagonal matrix * transpose(unitary matrix) *

*

* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *

* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * var a = //... symetric matrix * var result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * var unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * var b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * var lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * var v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * var c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm var tolerance = _Math.CesiumMath.EPSILON20; var maxSweeps = 10; var count = 0; var sweep = 0; if (!when.defined(result)) { result = {}; } var unitaryMatrix = result.unitary = Matrix3.clone(Matrix3.IDENTITY, result.unitary); var diagMatrix = result.diagonal = Matrix3.clone(matrix, result.diagonal); var epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function(matrix) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); var m11 = matrix[0]; var m21 = matrix[3]; var m31 = matrix[6]; var m12 = matrix[1]; var m22 = matrix[4]; var m32 = matrix[7]; var m13 = matrix[2]; var m23 = matrix[5]; var m33 = matrix[8]; return m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var m11 = matrix[0]; var m21 = matrix[1]; var m31 = matrix[2]; var m12 = matrix[3]; var m22 = matrix[4]; var m32 = matrix[5]; var m13 = matrix[6]; var m23 = matrix[7]; var m33 = matrix[8]; var determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= _Math.CesiumMath.EPSILON15) { throw new Check.DeveloperError('matrix is not invertible'); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; var scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix3.equals = function(left, right) { return (left === right) || (when.defined(left) && when.defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[7] === right[7] && left[8] === right[8]); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix3.equalsEpsilon = function(left, right, epsilon) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('epsilon', epsilon); //>>includeEnd('debug'); return (left === right) || (when.defined(left) && when.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon); }; /** * An immutable Matrix3 instance initialized to the identity matrix. * * @type {Matrix3} * @constant */ Matrix3.IDENTITY = Object.freeze(new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)); /** * An immutable Matrix3 instance initialized to the zero matrix. * * @type {Matrix3} * @constant */ Matrix3.ZERO = Object.freeze(new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)); /** * The index into Matrix3 for column 0, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW0 = 0; /** * The index into Matrix3 for column 0, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW1 = 1; /** * The index into Matrix3 for column 0, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW2 = 2; /** * The index into Matrix3 for column 1, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW0 = 3; /** * The index into Matrix3 for column 1, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW1 = 4; /** * The index into Matrix3 for column 1, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW2 = 5; /** * The index into Matrix3 for column 2, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW0 = 6; /** * The index into Matrix3 for column 2, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW1 = 7; /** * The index into Matrix3 for column 2, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW2 = 8; Object.defineProperties(Matrix3.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix3.prototype * * @type {Number} */ length : { get : function() { return Matrix3.packedLength; } } }); /** * Duplicates the provided Matrix3 instance. * * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.prototype.clone = function(result) { return Matrix3.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix3.prototype.equals = function(right) { return Matrix3.equals(this, right); }; /** * @private */ Matrix3.equalsArray = function(matrix, array, offset) { return matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8]; }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix3.prototype.equalsEpsilon = function(right, epsilon) { return Matrix3.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'. */ Matrix3.prototype.toString = function() { return '(' + this[0] + ', ' + this[3] + ', ' + this[6] + ')\n' + '(' + this[1] + ', ' + this[4] + ', ' + this[7] + ')\n' + '(' + this[2] + ', ' + this[5] + ', ' + this[8] + ')'; }; /** * A 4x4 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix4 * @constructor * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column3Row0=0.0] The value for column 3, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column3Row1=0.0] The value for column 3, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * @param {Number} [column3Row2=0.0] The value for column 3, row 2. * @param {Number} [column0Row3=0.0] The value for column 0, row 3. * @param {Number} [column1Row3=0.0] The value for column 1, row 3. * @param {Number} [column2Row3=0.0] The value for column 2, row 3. * @param {Number} [column3Row3=0.0] The value for column 3, row 3. * * @see Matrix4.fromColumnMajorArray * @see Matrix4.fromRowMajorArray * @see Matrix4.fromRotationTranslation * @see Matrix4.fromTranslationRotationScale * @see Matrix4.fromTranslationQuaternionRotationScale * @see Matrix4.fromTranslation * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.fromCamera * @see Matrix4.computePerspectiveFieldOfView * @see Matrix4.computeOrthographicOffCenter * @see Matrix4.computePerspectiveOffCenter * @see Matrix4.computeInfinitePerspectiveOffCenter * @see Matrix4.computeViewportTransformation * @see Matrix4.computeView * @see Matrix2 * @see Matrix3 * @see Packable */ function Matrix4(column0Row0, column1Row0, column2Row0, column3Row0, column0Row1, column1Row1, column2Row1, column3Row1, column0Row2, column1Row2, column2Row2, column3Row2, column0Row3, column1Row3, column2Row3, column3Row3) { this[0] = when.defaultValue(column0Row0, 0.0); this[1] = when.defaultValue(column0Row1, 0.0); this[2] = when.defaultValue(column0Row2, 0.0); this[3] = when.defaultValue(column0Row3, 0.0); this[4] = when.defaultValue(column1Row0, 0.0); this[5] = when.defaultValue(column1Row1, 0.0); this[6] = when.defaultValue(column1Row2, 0.0); this[7] = when.defaultValue(column1Row3, 0.0); this[8] = when.defaultValue(column2Row0, 0.0); this[9] = when.defaultValue(column2Row1, 0.0); this[10] = when.defaultValue(column2Row2, 0.0); this[11] = when.defaultValue(column2Row3, 0.0); this[12] = when.defaultValue(column3Row0, 0.0); this[13] = when.defaultValue(column3Row1, 0.0); this[14] = when.defaultValue(column3Row2, 0.0); this[15] = when.defaultValue(column3Row3, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix4.packedLength = 16; /** * Stores the provided instance into the provided array. * * @param {Matrix4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix4.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; array[startingIndex++] = value[9]; array[startingIndex++] = value[10]; array[startingIndex++] = value[11]; array[startingIndex++] = value[12]; array[startingIndex++] = value[13]; array[startingIndex++] = value[14]; array[startingIndex] = value[15]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix4} [result] The object into which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix4(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; result[9] = array[startingIndex++]; result[10] = array[startingIndex++]; result[11] = array[startingIndex++]; result[12] = array[startingIndex++]; result[13] = array[startingIndex++]; result[14] = array[startingIndex++]; result[15] = array[startingIndex]; return result; }; /** * Duplicates a Matrix4 instance. * * @param {Matrix4} matrix The matrix to duplicate. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix4.clone = function(matrix, result) { if (!when.defined(matrix)) { return undefined; } if (!when.defined(result)) { return new Matrix4(matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15]); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Creates a Matrix4 from 16 consecutive elements in an array. * @function * * @param {Number[]} array The array whose 16 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. * * @example * // Create the Matrix4: * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * * var v = [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * var m = Cesium.Matrix4.fromArray(v); * * // Create same Matrix4 with using an offset into an array * var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * var m2 = Cesium.Matrix4.fromArray(v2, 2); */ Matrix4.fromArray = Matrix4.unpack; /** * Computes a Matrix4 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromColumnMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); return Matrix4.clone(values, result); }; /** * Computes a Matrix4 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRowMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4(values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15]); } result[0] = values[0]; result[1] = values[4]; result[2] = values[8]; result[3] = values[12]; result[4] = values[1]; result[5] = values[5]; result[6] = values[9]; result[7] = values[13]; result[8] = values[2]; result[9] = values[6]; result[10] = values[10]; result[11] = values[14]; result[12] = values[3]; result[13] = values[7]; result[14] = values[11]; result[15] = values[15]; return result; }; /** * Computes a Matrix4 instance from a Matrix3 representing the rotation * and a Cartesian3 representing the translation. * * @param {Matrix3} rotation The upper left portion of the matrix representing the rotation. * @param {Cartesian3} [translation=Cartesian3.ZERO] The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRotationTranslation = function(rotation, translation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rotation', rotation); //>>includeEnd('debug'); translation = when.defaultValue(translation, Cartographic.Cartesian3.ZERO); if (!when.defined(result)) { return new Matrix4(rotation[0], rotation[3], rotation[6], translation.x, rotation[1], rotation[4], rotation[7], translation.y, rotation[2], rotation[5], rotation[8], translation.z, 0.0, 0.0, 0.0, 1.0); } result[0] = rotation[0]; result[1] = rotation[1]; result[2] = rotation[2]; result[3] = 0.0; result[4] = rotation[3]; result[5] = rotation[4]; result[6] = rotation[5]; result[7] = 0.0; result[8] = rotation[6]; result[9] = rotation[7]; result[10] = rotation[8]; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance from a translation, rotation, and scale (TRS) * representation with the rotation represented as a quaternion. * * @param {Cartesian3} translation The translation transformation. * @param {Quaternion} rotation The rotation transformation. * @param {Cartesian3} scale The non-uniform scale transformation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * var result = Cesium.Matrix4.fromTranslationQuaternionRotationScale( * new Cesium.Cartesian3(1.0, 2.0, 3.0), // translation * Cesium.Quaternion.IDENTITY, // rotation * new Cesium.Cartesian3(7.0, 8.0, 9.0), // scale * result); */ Matrix4.fromTranslationQuaternionRotationScale = function(translation, rotation, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('translation', translation); Check.Check.typeOf.object('rotation', rotation); Check.Check.typeOf.object('scale', scale); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix4(); } var scaleX = scale.x; var scaleY = scale.y; var scaleZ = scale.z; var x2 = rotation.x * rotation.x; var xy = rotation.x * rotation.y; var xz = rotation.x * rotation.z; var xw = rotation.x * rotation.w; var y2 = rotation.y * rotation.y; var yz = rotation.y * rotation.z; var yw = rotation.y * rotation.w; var z2 = rotation.z * rotation.z; var zw = rotation.z * rotation.w; var w2 = rotation.w * rotation.w; var m00 = x2 - y2 - z2 + w2; var m01 = 2.0 * (xy - zw); var m02 = 2.0 * (xz + yw); var m10 = 2.0 * (xy + zw); var m11 = -x2 + y2 - z2 + w2; var m12 = 2.0 * (yz - xw); var m20 = 2.0 * (xz - yw); var m21 = 2.0 * (yz + xw); var m22 = -x2 - y2 + z2 + w2; result[0] = m00 * scaleX; result[1] = m10 * scaleX; result[2] = m20 * scaleX; result[3] = 0.0; result[4] = m01 * scaleY; result[5] = m11 * scaleY; result[6] = m21 * scaleY; result[7] = 0.0; result[8] = m02 * scaleZ; result[9] = m12 * scaleZ; result[10] = m22 * scaleZ; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Creates a Matrix4 instance from a {@link TranslationRotationScale} instance. * * @param {TranslationRotationScale} translationRotationScale The instance. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromTranslationRotationScale = function(translationRotationScale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('translationRotationScale', translationRotationScale); //>>includeEnd('debug'); return Matrix4.fromTranslationQuaternionRotationScale(translationRotationScale.translation, translationRotationScale.rotation, translationRotationScale.scale, result); }; /** * Creates a Matrix4 instance from a Cartesian3 representing the translation. * * @param {Cartesian3} translation The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @see Matrix4.multiplyByTranslation */ Matrix4.fromTranslation = function(translation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('translation', translation); //>>includeEnd('debug'); return Matrix4.fromRotationTranslation(Matrix3.IDENTITY, translation, result); }; /** * Computes a Matrix4 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0, 0.0] * // [0.0, 8.0, 0.0, 0.0] * // [0.0, 0.0, 9.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * var m = Cesium.Matrix4.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix4.fromScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('scale', scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4( scale.x, 0.0, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, 0.0, scale.z, 0.0, 0.0, 0.0, 0.0, 1.0); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale.y; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale.z; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0, 0.0] * // [0.0, 2.0, 0.0, 0.0] * // [0.0, 0.0, 2.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * var m = Cesium.Matrix4.fromUniformScale(2.0); */ Matrix4.fromUniformScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('scale', scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4(scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, 1.0); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; var fromCameraF = new Cartographic.Cartesian3(); var fromCameraR = new Cartographic.Cartesian3(); var fromCameraU = new Cartographic.Cartesian3(); /** * Computes a Matrix4 instance from a Camera. * * @param {Camera} camera The camera to use. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromCamera = function(camera, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('camera', camera); //>>includeEnd('debug'); var position = camera.position; var direction = camera.direction; var up = camera.up; //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('camera.position', position); Check.Check.typeOf.object('camera.direction', direction); Check.Check.typeOf.object('camera.up', up); //>>includeEnd('debug'); Cartographic.Cartesian3.normalize(direction, fromCameraF); Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(fromCameraF, up, fromCameraR), fromCameraR); Cartographic.Cartesian3.normalize(Cartographic.Cartesian3.cross(fromCameraR, fromCameraF, fromCameraU), fromCameraU); var sX = fromCameraR.x; var sY = fromCameraR.y; var sZ = fromCameraR.z; var fX = fromCameraF.x; var fY = fromCameraF.y; var fZ = fromCameraF.z; var uX = fromCameraU.x; var uY = fromCameraU.y; var uZ = fromCameraU.z; var positionX = position.x; var positionY = position.y; var positionZ = position.z; var t0 = sX * -positionX + sY * -positionY+ sZ * -positionZ; var t1 = uX * -positionX + uY * -positionY+ uZ * -positionZ; var t2 = fX * positionX + fY * positionY + fZ * positionZ; // The code below this comment is an optimized // version of the commented lines. // Rather that create two matrices and then multiply, // we just bake in the multiplcation as part of creation. // var rotation = new Matrix4( // sX, sY, sZ, 0.0, // uX, uY, uZ, 0.0, // -fX, -fY, -fZ, 0.0, // 0.0, 0.0, 0.0, 1.0); // var translation = new Matrix4( // 1.0, 0.0, 0.0, -position.x, // 0.0, 1.0, 0.0, -position.y, // 0.0, 0.0, 1.0, -position.z, // 0.0, 0.0, 0.0, 1.0); // return rotation.multiply(translation); if (!when.defined(result)) { return new Matrix4( sX, sY, sZ, t0, uX, uY, uZ, t1, -fX, -fY, -fZ, t2, 0.0, 0.0, 0.0, 1.0); } result[0] = sX; result[1] = uX; result[2] = -fX; result[3] = 0.0; result[4] = sY; result[5] = uY; result[6] = -fY; result[7] = 0.0; result[8] = sZ; result[9] = uZ; result[10] = -fZ; result[11] = 0.0; result[12] = t0; result[13] = t1; result[14] = t2; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a perspective transformation matrix. * * @param {Number} fovY The field of view along the Y axis in radians. * @param {Number} aspectRatio The aspect ratio. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} fovY must be in (0, PI]. * @exception {DeveloperError} aspectRatio must be greater than zero. * @exception {DeveloperError} near must be greater than zero. * @exception {DeveloperError} far must be greater than zero. */ Matrix4.computePerspectiveFieldOfView = function(fovY, aspectRatio, near, far, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThan('fovY', fovY, 0.0); Check.Check.typeOf.number.lessThan('fovY', fovY, Math.PI); Check.Check.typeOf.number.greaterThan('near', near, 0.0); Check.Check.typeOf.number.greaterThan('far', far, 0.0); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var bottom = Math.tan(fovY * 0.5); var column1Row1 = 1.0 / bottom; var column0Row0 = column1Row1 / aspectRatio; var column2Row2 = (far + near) / (near - far); var column3Row2 = (2.0 * far * near) / (near - far); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = -1.0; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an orthographic transformation matrix. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeOrthographicOffCenter = function(left, right, bottom, top, near, far, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('left', left); Check.Check.typeOf.number('right', right); Check.Check.typeOf.number('bottom', bottom); Check.Check.typeOf.number('top', top); Check.Check.typeOf.number('near', near); Check.Check.typeOf.number('far', far); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var a = 1.0 / (right - left); var b = 1.0 / (top - bottom); var c = 1.0 / (far - near); var tx = -(right + left) * a; var ty = -(top + bottom) * b; var tz = -(far + near) * c; a *= 2.0; b *= 2.0; c *= -2.0; result[0] = a; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = b; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = c; result[11] = 0.0; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing an off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computePerspectiveOffCenter = function(left, right, bottom, top, near, far, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('left', left); Check.Check.typeOf.number('right', right); Check.Check.typeOf.number('bottom', bottom); Check.Check.typeOf.number('top', top); Check.Check.typeOf.number('near', near); Check.Check.typeOf.number('far', far); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = 2.0 * near / (right - left); var column1Row1 = 2.0 * near / (top - bottom); var column2Row0 = (right + left) / (right - left); var column2Row1 = (top + bottom) / (top - bottom); var column2Row2 = -(far + near) / (far - near); var column2Row3 = -1.0; var column3Row2 = -2.0 * far * near / (far - near); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an infinite off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeInfinitePerspectiveOffCenter = function(left, right, bottom, top, near, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('left', left); Check.Check.typeOf.number('right', right); Check.Check.typeOf.number('bottom', bottom); Check.Check.typeOf.number('top', top); Check.Check.typeOf.number('near', near); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = 2.0 * near / (right - left); var column1Row1 = 2.0 * near / (top - bottom); var column2Row0 = (right + left) / (right - left); var column2Row1 = (top + bottom) / (top - bottom); var column2Row2 = -1.0; var column2Row3 = -1.0; var column3Row2 = -2.0 * near; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance that transforms from normalized device coordinates to window coordinates. * * @param {Object}[viewport = { x : 0.0, y : 0.0, width : 0.0, height : 0.0 }] The viewport's corners as shown in Example 1. * @param {Number}[nearDepthRange=0.0] The near plane distance in window coordinates. * @param {Number}[farDepthRange=1.0] The far plane distance in window coordinates. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @example * // Create viewport transformation using an explicit viewport and depth range. * var m = Cesium.Matrix4.computeViewportTransformation({ * x : 0.0, * y : 0.0, * width : 1024.0, * height : 768.0 * }, 0.0, 1.0, new Cesium.Matrix4()); */ Matrix4.computeViewportTransformation = function(viewport, nearDepthRange, farDepthRange, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); viewport = when.defaultValue(viewport, when.defaultValue.EMPTY_OBJECT); var x = when.defaultValue(viewport.x, 0.0); var y = when.defaultValue(viewport.y, 0.0); var width = when.defaultValue(viewport.width, 0.0); var height = when.defaultValue(viewport.height, 0.0); nearDepthRange = when.defaultValue(nearDepthRange, 0.0); farDepthRange = when.defaultValue(farDepthRange, 1.0); var halfWidth = width * 0.5; var halfHeight = height * 0.5; var halfDepth = (farDepthRange - nearDepthRange) * 0.5; var column0Row0 = halfWidth; var column1Row1 = halfHeight; var column2Row2 = halfDepth; var column3Row0 = x + halfWidth; var column3Row1 = y + halfHeight; var column3Row2 = nearDepthRange + halfDepth; var column3Row3 = 1.0; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes a Matrix4 instance that transforms from world space to view space. * * @param {Cartesian3} position The position of the camera. * @param {Cartesian3} direction The forward direction. * @param {Cartesian3} up The up direction. * @param {Cartesian3} right The right direction. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeView = function(position, direction, up, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('position', position); Check.Check.typeOf.object('direction', direction); Check.Check.typeOf.object('up', up); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = right.x; result[1] = up.x; result[2] = -direction.x; result[3] = 0.0; result[4] = right.y; result[5] = up.y; result[6] = -direction.y; result[7] = 0.0; result[8] = right.z; result[9] = up.z; result[10] = -direction.z; result[11] = 0.0; result[12] = -Cartographic.Cartesian3.dot(right, position); result[13] = -Cartographic.Cartesian3.dot(up, position); result[14] = Cartographic.Cartesian3.dot(direction, position); result[15] = 1.0; return result; }; /** * Computes an Array from the provided Matrix4 instance. * The array will be in column-major order. * * @param {Matrix4} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. * * @example * //create an array from an instance of Matrix4 * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * var a = Cesium.Matrix4.toArray(m); * * // m remains the same * //creates a = [10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0] */ Matrix4.toArray = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); if (!when.defined(result)) { return [matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], matrix[9], matrix[10], matrix[11], matrix[12], matrix[13], matrix[14], matrix[15]]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, 2, or 3. * @exception {DeveloperError} column must be 0, 1, 2, or 3. * * @example * var myMatrix = new Cesium.Matrix4(); * var column1Row0Index = Cesium.Matrix4.getElementIndex(1, 0); * var column1Row0 = myMatrix[column1Row0Index]; * myMatrix[column1Row0Index] = 10.0; */ Matrix4.getElementIndex = function(column, row) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals('row', row, 0); Check.Check.typeOf.number.lessThanOrEquals('row', row, 3); Check.Check.typeOf.number.greaterThanOrEquals('column', column, 0); Check.Check.typeOf.number.lessThanOrEquals('column', column, 3); //>>includeEnd('debug'); return column * 4 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Creates an instance of Cartesian * var a = Cesium.Matrix4.getColumn(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for Cartesian instance * var a = new Cesium.Cartesian4(); * Cesium.Matrix4.getColumn(m, 2, a); * * // a.x = 12.0; a.y = 16.0; a.z = 20.0; a.w = 24.0; */ Matrix4.getColumn = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 3); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var startIndex = index * 4; var x = matrix[startIndex]; var y = matrix[startIndex + 1]; var z = matrix[startIndex + 2]; var w = matrix[startIndex + 3]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //creates a new Matrix4 instance with new column values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * var a = Cesium.Matrix4.setColumn(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 99.0, 13.0] * // [14.0, 15.0, 98.0, 17.0] * // [18.0, 19.0, 97.0, 21.0] * // [22.0, 23.0, 96.0, 25.0] */ Matrix4.setColumn = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 3); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); var startIndex = index * 4; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; result[startIndex + 3] = cartesian.w; return result; }; /** * Computes a new matrix that replaces the translation in the rightmost column of the provided * matrix with the provided translation. This assumes the matrix is an affine transformation * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} translation The translation that replaces the translation of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.setTranslation = function(matrix, translation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('translation', translation); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = matrix[15]; return result; }; var scaleScratch = new Cartographic.Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. This assumes the matrix is an affine transformation * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.setScale = function(matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('scale', scale); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var existingScale = Matrix4.getScale(matrix, scaleScratch); var newScale = Cartographic.Cartesian3.divideComponents(scale, existingScale, scaleScratch); return Matrix4.multiplyByScale(matrix, newScale, result); }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Returns an instance of Cartesian * var a = Cesium.Matrix4.getRow(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for a Cartesian instance * var a = new Cesium.Cartesian4(); * Cesium.Matrix4.getRow(m, 2, a); * * // a.x = 18.0; a.y = 19.0; a.z = 20.0; a.w = 21.0; */ Matrix4.getRow = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 3); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var x = matrix[index]; var y = matrix[index + 4]; var z = matrix[index + 8]; var w = matrix[index + 12]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //create a new Matrix4 instance with new row values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * var a = Cesium.Matrix4.setRow(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [99.0, 98.0, 97.0, 96.0] * // [22.0, 23.0, 24.0, 25.0] */ Matrix4.setRow = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 3); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); result[index] = cartesian.x; result[index + 4] = cartesian.y; result[index + 8] = cartesian.z; result[index + 12] = cartesian.w; return result; }; var scratchColumn$1 = new Cartographic.Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter */ Matrix4.getScale = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn$1)); result.y = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[4], matrix[5], matrix[6], scratchColumn$1)); result.z = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.fromElements(matrix[8], matrix[9], matrix[10], scratchColumn$1)); return result; }; var scratchScale$1 = new Cartographic.Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors in the upper-left * 3x3 matrix. * * @param {Matrix4} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix4.getMaximumScale = function(matrix) { Matrix4.getScale(matrix, scratchScale$1); return Cartographic.Cartesian3.maximumComponent(scratchScale$1); }; /** * Computes the product of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.multiply = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var left0 = left[0]; var left1 = left[1]; var left2 = left[2]; var left3 = left[3]; var left4 = left[4]; var left5 = left[5]; var left6 = left[6]; var left7 = left[7]; var left8 = left[8]; var left9 = left[9]; var left10 = left[10]; var left11 = left[11]; var left12 = left[12]; var left13 = left[13]; var left14 = left[14]; var left15 = left[15]; var right0 = right[0]; var right1 = right[1]; var right2 = right[2]; var right3 = right[3]; var right4 = right[4]; var right5 = right[5]; var right6 = right[6]; var right7 = right[7]; var right8 = right[8]; var right9 = right[9]; var right10 = right[10]; var right11 = right[11]; var right12 = right[12]; var right13 = right[13]; var right14 = right[14]; var right15 = right[15]; var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2 + left12 * right3; var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2 + left13 * right3; var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2 + left14 * right3; var column0Row3 = left3 * right0 + left7 * right1 + left11 * right2 + left15 * right3; var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6 + left12 * right7; var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6 + left13 * right7; var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6 + left14 * right7; var column1Row3 = left3 * right4 + left7 * right5 + left11 * right6 + left15 * right7; var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10 + left12 * right11; var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10 + left13 * right11; var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10 + left14 * right11; var column2Row3 = left3 * right8 + left7 * right9 + left11 * right10 + left15 * right11; var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12 * right15; var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13 * right15; var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14 * right15; var column3Row3 = left3 * right12 + left7 * right13 + left11 * right14 + left15 * right15; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column0Row3; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = column1Row3; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; result[9] = left[9] + right[9]; result[10] = left[10] + right[10]; result[11] = left[11] + right[11]; result[12] = left[12] + right[12]; result[13] = left[13] + right[13]; result[14] = left[14] + right[14]; result[15] = left[15] + right[15]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; result[9] = left[9] - right[9]; result[10] = left[10] - right[10]; result[11] = left[11] - right[11]; result[12] = left[12] - right[12]; result[13] = left[13] - right[13]; result[14] = left[14] - right[14]; result[15] = left[15] - right[15]; return result; }; /** * Computes the product of two matrices assuming the matrices are * affine transformation matrices, where the upper left 3x3 elements * are a rotation matrix, and the upper three elements in the fourth * column are the translation. The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the product for general 4x4 * matrices using {@link Matrix4.multiply}. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * var m1 = new Cesium.Matrix4(1.0, 6.0, 7.0, 0.0, 2.0, 5.0, 8.0, 0.0, 3.0, 4.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0); * var m2 = Cesium.Transforms.eastNorthUpToFixedFrame(new Cesium.Cartesian3(1.0, 1.0, 1.0)); * var m3 = Cesium.Matrix4.multiplyTransformation(m1, m2, new Cesium.Matrix4()); */ Matrix4.multiplyTransformation = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var left0 = left[0]; var left1 = left[1]; var left2 = left[2]; var left4 = left[4]; var left5 = left[5]; var left6 = left[6]; var left8 = left[8]; var left9 = left[9]; var left10 = left[10]; var left12 = left[12]; var left13 = left[13]; var left14 = left[14]; var right0 = right[0]; var right1 = right[1]; var right2 = right[2]; var right4 = right[4]; var right5 = right[5]; var right6 = right[6]; var right8 = right[8]; var right9 = right[9]; var right10 = right[10]; var right12 = right[12]; var right13 = right[13]; var right14 = right[14]; var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12; var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13; var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = 1.0; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by a 3x3 rotation matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromRotationTranslation(rotation), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Matrix3} rotation The 3x3 rotation matrix on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromRotationTranslation(rotation), m); * Cesium.Matrix4.multiplyByMatrix3(m, rotation, m); */ Matrix4.multiplyByMatrix3 = function(matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('rotation', rotation); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var left0 = matrix[0]; var left1 = matrix[1]; var left2 = matrix[2]; var left4 = matrix[4]; var left5 = matrix[5]; var left6 = matrix[6]; var left8 = matrix[8]; var left9 = matrix[9]; var left10 = matrix[10]; var right0 = rotation[0]; var right1 = rotation[1]; var right2 = rotation[2]; var right4 = rotation[3]; var right5 = rotation[4]; var right6 = rotation[5]; var right8 = rotation[6]; var right9 = rotation[7]; var right10 = rotation[8]; var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit translation matrix defined by a {@link Cartesian3}. This is an optimization * for Matrix4.multiply(m, Matrix4.fromTranslation(position), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Cartesian3} translation The translation on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromTranslation(position), m); * Cesium.Matrix4.multiplyByTranslation(m, position, m); */ Matrix4.multiplyByTranslation = function(matrix, translation, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('translation', translation); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var x = translation.x; var y = translation.y; var z = translation.z; var tx = (x * matrix[0]) + (y * matrix[4]) + (z * matrix[8]) + matrix[12]; var ty = (x * matrix[1]) + (y * matrix[5]) + (z * matrix[9]) + matrix[13]; var tz = (x * matrix[2]) + (y * matrix[6]) + (z * matrix[10]) + matrix[14]; result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = matrix[15]; return result; }; var uniformScaleScratch = new Cartographic.Cartesian3(); /** * Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit uniform scale matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);, where * m must be an affine matrix. * This function performs fewer allocations and arithmetic operations. * * @param {Matrix4} matrix The affine matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromUniformScale(scale), m); * Cesium.Matrix4.multiplyByUniformScale(m, scale, m); * * @see Matrix4.fromUniformScale * @see Matrix4.multiplyByScale */ Matrix4.multiplyByUniformScale = function(matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number('scale', scale); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); uniformScaleScratch.x = scale; uniformScaleScratch.y = scale; uniformScaleScratch.z = scale; return Matrix4.multiplyByScale(matrix, uniformScaleScratch, result); }; /** * Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit non-uniform scale matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);, where * m must be an affine matrix. * This function performs fewer allocations and arithmetic operations. * * @param {Matrix4} matrix The affine matrix on the left-hand side. * @param {Cartesian3} scale The non-uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromScale(scale), m); * Cesium.Matrix4.multiplyByScale(m, scale, m); * * @see Matrix4.fromScale * @see Matrix4.multiplyByUniformScale */ Matrix4.multiplyByScale = function(matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('scale', scale); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var scaleX = scale.x; var scaleY = scale.y; var scaleZ = scale.z; // Faster than Cartesian3.equals if ((scaleX === 1.0) && (scaleY === 1.0) && (scaleZ === 1.0)) { return Matrix4.clone(matrix, result); } result[0] = scaleX * matrix[0]; result[1] = scaleX * matrix[1]; result[2] = scaleX * matrix[2]; result[3] = 0.0; result[4] = scaleY * matrix[4]; result[5] = scaleY * matrix[5]; result[6] = scaleY * matrix[6]; result[7] = 0.0; result[8] = scaleZ * matrix[8]; result[9] = scaleZ * matrix[9]; result[10] = scaleZ * matrix[10]; result[11] = 0.0; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = 1.0; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix4} matrix The matrix. * @param {Cartesian4} cartesian The vector. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Matrix4.multiplyByVector = function(matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var vX = cartesian.x; var vY = cartesian.y; var vZ = cartesian.z; var vW = cartesian.w; var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW; var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW; var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW; var w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of zero. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * var p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * var result = Cesium.Matrix4.multiplyByPointAsVector(matrix, p, new Cesium.Cartesian3()); * // A shortcut for * // Cartesian3 p = ... * // Cesium.Matrix4.multiplyByVector(matrix, new Cesium.Cartesian4(p.x, p.y, p.z, 0.0), result); */ Matrix4.multiplyByPointAsVector = function(matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var vX = cartesian.x; var vY = cartesian.y; var vZ = cartesian.z; var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ; var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ; var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * var p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * var result = Cesium.Matrix4.multiplyByPoint(matrix, p, new Cesium.Cartesian3()); */ Matrix4.multiplyByPoint = function(matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var vX = cartesian.x; var vY = cartesian.y; var vZ = cartesian.z; var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12]; var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13]; var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix4} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a Matrix4 instance which is a scaled version of the supplied Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * var a = Cesium.Matrix4.multiplyByScalar(m, -2, new Cesium.Matrix4()); * * // m remains the same * // a = [-20.0, -22.0, -24.0, -26.0] * // [-28.0, -30.0, -32.0, -34.0] * // [-36.0, -38.0, -40.0, -42.0] * // [-44.0, -46.0, -48.0, -50.0] */ Matrix4.multiplyByScalar = function(matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; result[9] = matrix[9] * scalar; result[10] = matrix[10] * scalar; result[11] = matrix[11] * scalar; result[12] = matrix[12] * scalar; result[13] = matrix[13] * scalar; result[14] = matrix[14] * scalar; result[15] = matrix[15] * scalar; return result; }; /** * Compute the product of a matrix and a plane. * @param matrix * @param plane * @param result * @returns {*} */ Matrix4.multiplyByPlane = function(matrix, plane, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('plane', plane); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var inverseMat = new Matrix4(); var invTrans = new Matrix4(); Matrix4.inverse(matrix, inverseMat); Matrix4.transpose(inverseMat, invTrans); var v4 = new Cartesian4.Cartesian4(plane.normal.x, plane.normal.y, plane.normal.z, plane.distance); Matrix4.multiplyByVector(invTrans, v4, v4); result.normal.x = v4.x; result.normal.y = v4.y; result.normal.z = v4.z; var length = Cartographic.Cartesian3.magnitude(result.normal); Cartographic.Cartesian3.normalize(result.normal, result.normal); result.distance = v4.w / length; return result; }; /** * Computes a negated copy of the provided matrix. * * @param {Matrix4} matrix The matrix to negate. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a new Matrix4 instance which is a negation of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * var a = Cesium.Matrix4.negate(m, new Cesium.Matrix4()); * * // m remains the same * // a = [-10.0, -11.0, -12.0, -13.0] * // [-14.0, -15.0, -16.0, -17.0] * // [-18.0, -19.0, -20.0, -21.0] * // [-22.0, -23.0, -24.0, -25.0] */ Matrix4.negate = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; result[9] = -matrix[9]; result[10] = -matrix[10]; result[11] = -matrix[11]; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = -matrix[15]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix4} matrix The matrix to transpose. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //returns transpose of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * var a = Cesium.Matrix4.transpose(m, new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] */ Matrix4.transpose = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var matrix1 = matrix[1]; var matrix2 = matrix[2]; var matrix3 = matrix[3]; var matrix6 = matrix[6]; var matrix7 = matrix[7]; var matrix11 = matrix[11]; result[0] = matrix[0]; result[1] = matrix[4]; result[2] = matrix[8]; result[3] = matrix[12]; result[4] = matrix1; result[5] = matrix[5]; result[6] = matrix[9]; result[7] = matrix[13]; result[8] = matrix2; result[9] = matrix6; result[10] = matrix[10]; result[11] = matrix[14]; result[12] = matrix3; result[13] = matrix7; result[14] = matrix11; result[15] = matrix[15]; return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix4} matrix The matrix with signed elements. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.abs = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); result[9] = Math.abs(matrix[9]); result[10] = Math.abs(matrix[10]); result[11] = Math.abs(matrix[11]); result[12] = Math.abs(matrix[12]); result[13] = Math.abs(matrix[13]); result[14] = Math.abs(matrix[14]); result[15] = Math.abs(matrix[15]); return result; }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equals(a,b)) { * console.log("Both matrices are equal"); * } else { * console.log("They are not equal"); * } * * //Prints "Both matrices are equal" on the console */ Matrix4.equals = function(left, right) { // Given that most matrices will be transformation matrices, the elements // are tested in order such that the test is likely to fail as early // as possible. I _think_ this is just as friendly to the L1 cache // as testing in index order. It is certainty faster in practice. return (left === right) || (when.defined(left) && when.defined(right) && // Translation left[12] === right[12] && left[13] === right[13] && left[14] === right[14] && // Rotation/scale left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[8] === right[8] && left[9] === right[9] && left[10] === right[10] && // Bottom row left[3] === right[3] && left[7] === right[7] && left[11] === right[11] && left[15] === right[15]); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.5, 14.5, 18.5, 22.5] * // [11.5, 15.5, 19.5, 23.5] * // [12.5, 16.5, 20.5, 24.5] * // [13.5, 17.5, 21.5, 25.5] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equalsEpsilon(a,b,0.1)){ * console.log("Difference between both the matrices is less than 0.1"); * } else { * console.log("Difference between both the matrices is not less than 0.1"); * } * * //Prints "Difference between both the matrices is not less than 0.1" on the console */ Matrix4.equalsEpsilon = function(left, right, epsilon) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('epsilon', epsilon); //>>includeEnd('debug'); return (left === right) || (when.defined(left) && when.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon && Math.abs(left[9] - right[9]) <= epsilon && Math.abs(left[10] - right[10]) <= epsilon && Math.abs(left[11] - right[11]) <= epsilon && Math.abs(left[12] - right[12]) <= epsilon && Math.abs(left[13] - right[13]) <= epsilon && Math.abs(left[14] - right[14]) <= epsilon && Math.abs(left[15] - right[15]) <= epsilon); }; /** * Gets the translation portion of the provided matrix, assuming the matrix is a affine transformation matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix4.getTranslation = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = matrix[12]; result.y = matrix[13]; result.z = matrix[14]; return result; }; /** * Gets the upper left 3x3 rotation matrix of the provided matrix, assuming the matrix is an affine transformation matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // returns a Matrix3 instance from a Matrix4 instance * * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * var b = new Cesium.Matrix3(); * Cesium.Matrix4.getMatrix3(m,b); * * // b = [10.0, 14.0, 18.0] * // [11.0, 15.0, 19.0] * // [12.0, 16.0, 20.0] */ Matrix4.getMatrix3 = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[4]; result[4] = matrix[5]; result[5] = matrix[6]; result[6] = matrix[8]; result[7] = matrix[9]; result[8] = matrix[10]; return result; }; /** * Gets the upper left 3x3 rotation matrix of the provided matrix, assuming the matrix is a affine transformation matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // returns a Matrix3 instance from a Matrix4 instance * * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * var b = new Cesium.Matrix3(); * Cesium.Matrix4.getRotation(m,b); * * // b = [10.0, 14.0, 18.0] * // [11.0, 15.0, 19.0] * // [12.0, 16.0, 20.0] */ Matrix4.getRotation = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[4]; result[4] = matrix[5]; result[5] = matrix[6]; result[6] = matrix[8]; result[7] = matrix[9]; result[8] = matrix[10]; return result; }; var scratchInverseRotation = new Matrix3(); var scratchMatrix3Zero = new Matrix3(); var scratchBottomRow = new Cartesian4.Cartesian4(); var scratchExpectedBottomRow = new Cartesian4.Cartesian4(0.0, 0.0, 0.0, 1.0); /** * Computes the inverse of the provided matrix using Cramers Rule. * If the determinant is zero, the matrix can not be inverted, and an exception is thrown. * If the matrix is an affine transformation matrix, it is more efficient * to invert it with {@link Matrix4.inverseTransformation}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {RuntimeError} matrix is not invertible because its determinate is zero. */ Matrix4.inverse = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); // // Ported from: // ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf // var src0 = matrix[0]; var src1 = matrix[4]; var src2 = matrix[8]; var src3 = matrix[12]; var src4 = matrix[1]; var src5 = matrix[5]; var src6 = matrix[9]; var src7 = matrix[13]; var src8 = matrix[2]; var src9 = matrix[6]; var src10 = matrix[10]; var src11 = matrix[14]; var src12 = matrix[3]; var src13 = matrix[7]; var src14 = matrix[11]; var src15 = matrix[15]; // calculate pairs for first 8 elements (cofactors) var tmp0 = src10 * src15; var tmp1 = src11 * src14; var tmp2 = src9 * src15; var tmp3 = src11 * src13; var tmp4 = src9 * src14; var tmp5 = src10 * src13; var tmp6 = src8 * src15; var tmp7 = src11 * src12; var tmp8 = src8 * src14; var tmp9 = src10 * src12; var tmp10 = src8 * src13; var tmp11 = src9 * src12; // calculate first 8 elements (cofactors) var dst0 = (tmp0 * src5 + tmp3 * src6 + tmp4 * src7) - (tmp1 * src5 + tmp2 * src6 + tmp5 * src7); var dst1 = (tmp1 * src4 + tmp6 * src6 + tmp9 * src7) - (tmp0 * src4 + tmp7 * src6 + tmp8 * src7); var dst2 = (tmp2 * src4 + tmp7 * src5 + tmp10 * src7) - (tmp3 * src4 + tmp6 * src5 + tmp11 * src7); var dst3 = (tmp5 * src4 + tmp8 * src5 + tmp11 * src6) - (tmp4 * src4 + tmp9 * src5 + tmp10 * src6); var dst4 = (tmp1 * src1 + tmp2 * src2 + tmp5 * src3) - (tmp0 * src1 + tmp3 * src2 + tmp4 * src3); var dst5 = (tmp0 * src0 + tmp7 * src2 + tmp8 * src3) - (tmp1 * src0 + tmp6 * src2 + tmp9 * src3); var dst6 = (tmp3 * src0 + tmp6 * src1 + tmp11 * src3) - (tmp2 * src0 + tmp7 * src1 + tmp10 * src3); var dst7 = (tmp4 * src0 + tmp9 * src1 + tmp10 * src2) - (tmp5 * src0 + tmp8 * src1 + tmp11 * src2); // calculate pairs for second 8 elements (cofactors) tmp0 = src2 * src7; tmp1 = src3 * src6; tmp2 = src1 * src7; tmp3 = src3 * src5; tmp4 = src1 * src6; tmp5 = src2 * src5; tmp6 = src0 * src7; tmp7 = src3 * src4; tmp8 = src0 * src6; tmp9 = src2 * src4; tmp10 = src0 * src5; tmp11 = src1 * src4; // calculate second 8 elements (cofactors) var dst8 = (tmp0 * src13 + tmp3 * src14 + tmp4 * src15) - (tmp1 * src13 + tmp2 * src14 + tmp5 * src15); var dst9 = (tmp1 * src12 + tmp6 * src14 + tmp9 * src15) - (tmp0 * src12 + tmp7 * src14 + tmp8 * src15); var dst10 = (tmp2 * src12 + tmp7 * src13 + tmp10 * src15) - (tmp3 * src12 + tmp6 * src13 + tmp11 * src15); var dst11 = (tmp5 * src12 + tmp8 * src13 + tmp11 * src14) - (tmp4 * src12 + tmp9 * src13 + tmp10 * src14); var dst12 = (tmp2 * src10 + tmp5 * src11 + tmp1 * src9) - (tmp4 * src11 + tmp0 * src9 + tmp3 * src10); var dst13 = (tmp8 * src11 + tmp0 * src8 + tmp7 * src10) - (tmp6 * src10 + tmp9 * src11 + tmp1 * src8); var dst14 = (tmp6 * src9 + tmp11 * src11 + tmp3 * src8) - (tmp10 * src11 + tmp2 * src8 + tmp7 * src9); var dst15 = (tmp10 * src10 + tmp4 * src8 + tmp9 * src9) - (tmp8 * src9 + tmp11 * src10 + tmp5 * src8); // calculate determinant var det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; if (Math.abs(det) < _Math.CesiumMath.EPSILON21) { // Special case for a zero scale matrix that can occur, for example, // when a model's node has a [0, 0, 0] scale. if (Matrix3.equalsEpsilon(Matrix4.getRotation(matrix, scratchInverseRotation), scratchMatrix3Zero, _Math.CesiumMath.EPSILON7) && Cartesian4.Cartesian4.equals(Matrix4.getRow(matrix, 3, scratchBottomRow), scratchExpectedBottomRow)) { result[0] = 0.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = 0.0; result[11] = 0.0; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = 1.0; return result; } throw new RuntimeError.RuntimeError('matrix is not invertible because its determinate is zero.'); } // calculate matrix inverse det = 1.0 / det; result[0] = dst0 * det; result[1] = dst1 * det; result[2] = dst2 * det; result[3] = dst3 * det; result[4] = dst4 * det; result[5] = dst5 * det; result[6] = dst6 * det; result[7] = dst7 * det; result[8] = dst8 * det; result[9] = dst9 * det; result[10] = dst10 * det; result[11] = dst11 * det; result[12] = dst12 * det; result[13] = dst13 * det; result[14] = dst14 * det; result[15] = dst15 * det; return result; }; /** * Computes the inverse of the provided matrix assuming it is * an affine transformation matrix, where the upper left 3x3 elements * are a rotation matrix, and the upper three elements in the fourth * column are the translation. The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the inverse for a general 4x4 * matrix using {@link Matrix4.inverse}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.inverseTransformation = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); //This function is an optimized version of the below 4 lines. //var rT = Matrix3.transpose(Matrix4.getRotation(matrix)); //var rTN = Matrix3.negate(rT); //var rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix)); //return Matrix4.fromRotationTranslation(rT, rTT, result); var matrix0 = matrix[0]; var matrix1 = matrix[1]; var matrix2 = matrix[2]; var matrix4 = matrix[4]; var matrix5 = matrix[5]; var matrix6 = matrix[6]; var matrix8 = matrix[8]; var matrix9 = matrix[9]; var matrix10 = matrix[10]; var vX = matrix[12]; var vY = matrix[13]; var vZ = matrix[14]; var x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ; var y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ; var z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ; result[0] = matrix0; result[1] = matrix4; result[2] = matrix8; result[3] = 0.0; result[4] = matrix1; result[5] = matrix5; result[6] = matrix9; result[7] = 0.0; result[8] = matrix2; result[9] = matrix6; result[10] = matrix10; result[11] = 0.0; result[12] = x; result[13] = y; result[14] = z; result[15] = 1.0; return result; }; /** * An immutable Matrix4 instance initialized to the identity matrix. * * @type {Matrix4} * @constant */ Matrix4.IDENTITY = Object.freeze(new Matrix4(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)); /** * An immutable Matrix4 instance initialized to the zero matrix. * * @type {Matrix4} * @constant */ Matrix4.ZERO = Object.freeze(new Matrix4(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)); /** * The index into Matrix4 for column 0, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW0 = 0; /** * The index into Matrix4 for column 0, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW1 = 1; /** * The index into Matrix4 for column 0, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW2 = 2; /** * The index into Matrix4 for column 0, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW3 = 3; /** * The index into Matrix4 for column 1, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW0 = 4; /** * The index into Matrix4 for column 1, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW1 = 5; /** * The index into Matrix4 for column 1, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW2 = 6; /** * The index into Matrix4 for column 1, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW3 = 7; /** * The index into Matrix4 for column 2, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW0 = 8; /** * The index into Matrix4 for column 2, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW1 = 9; /** * The index into Matrix4 for column 2, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW2 = 10; /** * The index into Matrix4 for column 2, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW3 = 11; /** * The index into Matrix4 for column 3, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW0 = 12; /** * The index into Matrix4 for column 3, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW1 = 13; /** * The index into Matrix4 for column 3, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW2 = 14; /** * The index into Matrix4 for column 3, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW3 = 15; Object.defineProperties(Matrix4.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix4.prototype * * @type {Number} */ length : { get : function() { return Matrix4.packedLength; } } }); /** * Duplicates the provided Matrix4 instance. * * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.prototype.clone = function(result) { return Matrix4.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix4.prototype.equals = function(right) { return Matrix4.equals(this, right); }; /** * @private */ Matrix4.equalsArray = function(matrix, array, offset) { return matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] && matrix[9] === array[offset + 9] && matrix[10] === array[offset + 10] && matrix[11] === array[offset + 11] && matrix[12] === array[offset + 12] && matrix[13] === array[offset + 13] && matrix[14] === array[offset + 14] && matrix[15] === array[offset + 15]; }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix4.prototype.equalsEpsilon = function(right, epsilon) { return Matrix4.equalsEpsilon(this, right, epsilon); }; /** * Computes a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2, column3)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'. */ Matrix4.prototype.toString = function() { return '(' + this[0] + ', ' + this[4] + ', ' + this[8] + ', ' + this[12] +')\n' + '(' + this[1] + ', ' + this[5] + ', ' + this[9] + ', ' + this[13] +')\n' + '(' + this[2] + ', ' + this[6] + ', ' + this[10] + ', ' + this[14] +')\n' + '(' + this[3] + ', ' + this[7] + ', ' + this[11] + ', ' + this[15] +')'; }; /** * A bounding sphere with a center and a radius. * @alias BoundingSphere * @constructor * * @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere. * @param {Number} [radius=0.0] The radius of the bounding sphere. * * @see AxisAlignedBoundingBox * @see BoundingRectangle * @see Packable */ function BoundingSphere(center, radius) { /** * The center point of the sphere. * @type {Cartesian3} * @default {@link Cartesian3.ZERO} */ this.center = Cartographic.Cartesian3.clone(when.defaultValue(center, Cartographic.Cartesian3.ZERO)); /** * The radius of the sphere. * @type {Number} * @default 0.0 */ this.radius = when.defaultValue(radius, 0.0); } var fromPointsXMin = new Cartographic.Cartesian3(); var fromPointsYMin = new Cartographic.Cartesian3(); var fromPointsZMin = new Cartographic.Cartesian3(); var fromPointsXMax = new Cartographic.Cartesian3(); var fromPointsYMax = new Cartographic.Cartesian3(); var fromPointsZMax = new Cartographic.Cartesian3(); var fromPointsCurrentPos = new Cartographic.Cartesian3(); var fromPointsScratch = new Cartographic.Cartesian3(); var fromPointsRitterCenter = new Cartographic.Cartesian3(); var fromPointsMinBoxPt = new Cartographic.Cartesian3(); var fromPointsMaxBoxPt = new Cartographic.Cartesian3(); var fromPointsNaiveCenterScratch = new Cartographic.Cartesian3(); var volumeConstant = (4.0 / 3.0) * _Math.CesiumMath.PI; /** * Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points. * The bounding sphere is computed by running two algorithms, a naive algorithm and * Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit. * * @param {Cartesian3[]} [positions] An array of points that the bounding sphere will enclose. Each point must have x, y, and z properties. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @see {@link http://help.agi.com/AGIComponents/html/BlogBoundingSphere.htm|Bounding Sphere computation article} */ BoundingSphere.fromPoints = function(positions, result) { if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(positions) || positions.length === 0) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } var currentPos = Cartographic.Cartesian3.clone(positions[0], fromPointsCurrentPos); var xMin = Cartographic.Cartesian3.clone(currentPos, fromPointsXMin); var yMin = Cartographic.Cartesian3.clone(currentPos, fromPointsYMin); var zMin = Cartographic.Cartesian3.clone(currentPos, fromPointsZMin); var xMax = Cartographic.Cartesian3.clone(currentPos, fromPointsXMax); var yMax = Cartographic.Cartesian3.clone(currentPos, fromPointsYMax); var zMax = Cartographic.Cartesian3.clone(currentPos, fromPointsZMax); var numPositions = positions.length; var i; for (i = 1; i < numPositions; i++) { Cartographic.Cartesian3.clone(positions[i], currentPos); var x = currentPos.x; var y = currentPos.y; var z = currentPos.z; // Store points containing the the smallest and largest components if (x < xMin.x) { Cartographic.Cartesian3.clone(currentPos, xMin); } if (x > xMax.x) { Cartographic.Cartesian3.clone(currentPos, xMax); } if (y < yMin.y) { Cartographic.Cartesian3.clone(currentPos, yMin); } if (y > yMax.y) { Cartographic.Cartesian3.clone(currentPos, yMax); } if (z < zMin.z) { Cartographic.Cartesian3.clone(currentPos, zMin); } if (z > zMax.z) { Cartographic.Cartesian3.clone(currentPos, zMax); } } // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.). var xSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(xMax, xMin, fromPointsScratch)); var ySpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(yMax, yMin, fromPointsScratch)); var zSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(zMax, zMin, fromPointsScratch)); // Set the diameter endpoints to the largest span. var diameter1 = xMin; var diameter2 = xMax; var maxSpan = xSpan; if (ySpan > maxSpan) { maxSpan = ySpan; diameter1 = yMin; diameter2 = yMax; } if (zSpan > maxSpan) { maxSpan = zSpan; diameter1 = zMin; diameter2 = zMax; } // Calculate the center of the initial sphere found by Ritter's algorithm var ritterCenter = fromPointsRitterCenter; ritterCenter.x = (diameter1.x + diameter2.x) * 0.5; ritterCenter.y = (diameter1.y + diameter2.y) * 0.5; ritterCenter.z = (diameter1.z + diameter2.z) * 0.5; // Calculate the radius of the initial sphere found by Ritter's algorithm var radiusSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)); var ritterRadius = Math.sqrt(radiusSquared); // Find the center of the sphere found using the Naive method. var minBoxPt = fromPointsMinBoxPt; minBoxPt.x = xMin.x; minBoxPt.y = yMin.y; minBoxPt.z = zMin.z; var maxBoxPt = fromPointsMaxBoxPt; maxBoxPt.x = xMax.x; maxBoxPt.y = yMax.y; maxBoxPt.z = zMax.z; var naiveCenter = Cartographic.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch); // Begin 2nd pass to find naive radius and modify the ritter sphere. var naiveRadius = 0; for (i = 0; i < numPositions; i++) { Cartographic.Cartesian3.clone(positions[i], currentPos); // Find the furthest point from the naive center to calculate the naive radius. var r = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)); if (r > naiveRadius) { naiveRadius = r; } // Make adjustments to the Ritter Sphere to include all points. var oldCenterToPointSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)); if (oldCenterToPointSquared > radiusSquared) { var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared); // Calculate new radius to include the point that lies outside ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5; radiusSquared = ritterRadius * ritterRadius; // Calculate center of new Ritter sphere var oldToNew = oldCenterToPoint - ritterRadius; ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint; ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint; ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint; } } if (ritterRadius < naiveRadius) { Cartographic.Cartesian3.clone(ritterCenter, result.center); result.radius = ritterRadius; } else { Cartographic.Cartesian3.clone(naiveCenter, result.center); result.radius = naiveRadius; } return result; }; var defaultProjection = new GeographicProjection(); var fromRectangle2DLowerLeft = new Cartographic.Cartesian3(); var fromRectangle2DUpperRight = new Cartographic.Cartesian3(); var fromRectangle2DSouthwest = new Cartographic.Cartographic(); var fromRectangle2DNortheast = new Cartographic.Cartographic(); /** * Computes a bounding sphere from a rectangle projected in 2D. * * @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere. * @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.fromRectangle2D = function(rectangle, projection, result) { return BoundingSphere.fromRectangleWithHeights2D(rectangle, projection, 0.0, 0.0, result); }; /** * Computes a bounding sphere from a rectangle projected in 2D. The bounding sphere accounts for the * object's minimum and maximum heights over the rectangle. * * @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere. * @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D. * @param {Number} [minimumHeight=0.0] The minimum height over the rectangle. * @param {Number} [maximumHeight=0.0] The maximum height over the rectangle. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.fromRectangleWithHeights2D = function(rectangle, projection, minimumHeight, maximumHeight, result) { if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(rectangle)) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } projection = when.defaultValue(projection, defaultProjection); Cartesian2.Rectangle.southwest(rectangle, fromRectangle2DSouthwest); fromRectangle2DSouthwest.height = minimumHeight; Cartesian2.Rectangle.northeast(rectangle, fromRectangle2DNortheast); fromRectangle2DNortheast.height = maximumHeight; var lowerLeft = projection.project(fromRectangle2DSouthwest, fromRectangle2DLowerLeft); var upperRight = projection.project(fromRectangle2DNortheast, fromRectangle2DUpperRight); var width = upperRight.x - lowerLeft.x; var height = upperRight.y - lowerLeft.y; var elevation = upperRight.z - lowerLeft.z; result.radius = Math.sqrt(width * width + height * height + elevation * elevation) * 0.5; var center = result.center; center.x = lowerLeft.x + width * 0.5; center.y = lowerLeft.y + height * 0.5; center.z = lowerLeft.z + elevation * 0.5; return result; }; var fromRectangle3DScratch = []; /** * Computes a bounding sphere from a rectangle in 3D. The bounding sphere is created using a subsample of points * on the ellipsoid and contained in the rectangle. It may not be accurate for all rectangles on all types of ellipsoids. * * @param {Rectangle} [rectangle] The valid rectangle used to create a bounding sphere. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the rectangle. * @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.fromRectangle3D = function(rectangle, ellipsoid, surfaceHeight, result) { ellipsoid = when.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84); surfaceHeight = when.defaultValue(surfaceHeight, 0.0); if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(rectangle)) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } var positions = Cartesian2.Rectangle.subsample(rectangle, ellipsoid, surfaceHeight, fromRectangle3DScratch); return BoundingSphere.fromPoints(positions, result); }; /** * Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are * stored in a flat array in X, Y, Z, order. The bounding sphere is computed by running two * algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to * ensure a tight fit. * * @param {Number[]} [positions] An array of points that the bounding sphere will enclose. Each point * is formed from three elements in the array in the order X, Y, Z. * @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the * origin of the coordinate system. This is useful when the positions are to be used for * relative-to-center (RTC) rendering. * @param {Number} [stride=3] The number of array elements per vertex. It must be at least 3, but it may * be higher. Regardless of the value of this parameter, the X coordinate of the first position * is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index * 2. When stride is 3, the X coordinate of the next position then begins at array index 3. If * the stride is 5, however, two array elements are skipped and the next position begins at array * index 5. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @example * // Compute the bounding sphere from 3 positions, each specified relative to a center. * // In addition to the X, Y, and Z coordinates, the points array contains two additional * // elements per point which are ignored for the purpose of computing the bounding sphere. * var center = new Cesium.Cartesian3(1.0, 2.0, 3.0); * var points = [1.0, 2.0, 3.0, 0.1, 0.2, * 4.0, 5.0, 6.0, 0.1, 0.2, * 7.0, 8.0, 9.0, 0.1, 0.2]; * var sphere = Cesium.BoundingSphere.fromVertices(points, center, 5); * * @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article} */ BoundingSphere.fromVertices = function(positions, center, stride, result) { if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(positions) || positions.length === 0) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } center = when.defaultValue(center, Cartographic.Cartesian3.ZERO); stride = when.defaultValue(stride, 3); //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals('stride', stride, 3); //>>includeEnd('debug'); var currentPos = fromPointsCurrentPos; currentPos.x = positions[0] + center.x; currentPos.y = positions[1] + center.y; currentPos.z = positions[2] + center.z; var xMin = Cartographic.Cartesian3.clone(currentPos, fromPointsXMin); var yMin = Cartographic.Cartesian3.clone(currentPos, fromPointsYMin); var zMin = Cartographic.Cartesian3.clone(currentPos, fromPointsZMin); var xMax = Cartographic.Cartesian3.clone(currentPos, fromPointsXMax); var yMax = Cartographic.Cartesian3.clone(currentPos, fromPointsYMax); var zMax = Cartographic.Cartesian3.clone(currentPos, fromPointsZMax); var numElements = positions.length; var i; for (i = 0; i < numElements; i += stride) { var x = positions[i] + center.x; var y = positions[i + 1] + center.y; var z = positions[i + 2] + center.z; currentPos.x = x; currentPos.y = y; currentPos.z = z; // Store points containing the the smallest and largest components if (x < xMin.x) { Cartographic.Cartesian3.clone(currentPos, xMin); } if (x > xMax.x) { Cartographic.Cartesian3.clone(currentPos, xMax); } if (y < yMin.y) { Cartographic.Cartesian3.clone(currentPos, yMin); } if (y > yMax.y) { Cartographic.Cartesian3.clone(currentPos, yMax); } if (z < zMin.z) { Cartographic.Cartesian3.clone(currentPos, zMin); } if (z > zMax.z) { Cartographic.Cartesian3.clone(currentPos, zMax); } } // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.). var xSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(xMax, xMin, fromPointsScratch)); var ySpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(yMax, yMin, fromPointsScratch)); var zSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(zMax, zMin, fromPointsScratch)); // Set the diameter endpoints to the largest span. var diameter1 = xMin; var diameter2 = xMax; var maxSpan = xSpan; if (ySpan > maxSpan) { maxSpan = ySpan; diameter1 = yMin; diameter2 = yMax; } if (zSpan > maxSpan) { maxSpan = zSpan; diameter1 = zMin; diameter2 = zMax; } // Calculate the center of the initial sphere found by Ritter's algorithm var ritterCenter = fromPointsRitterCenter; ritterCenter.x = (diameter1.x + diameter2.x) * 0.5; ritterCenter.y = (diameter1.y + diameter2.y) * 0.5; ritterCenter.z = (diameter1.z + diameter2.z) * 0.5; // Calculate the radius of the initial sphere found by Ritter's algorithm var radiusSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)); var ritterRadius = Math.sqrt(radiusSquared); // Find the center of the sphere found using the Naive method. var minBoxPt = fromPointsMinBoxPt; minBoxPt.x = xMin.x; minBoxPt.y = yMin.y; minBoxPt.z = zMin.z; var maxBoxPt = fromPointsMaxBoxPt; maxBoxPt.x = xMax.x; maxBoxPt.y = yMax.y; maxBoxPt.z = zMax.z; var naiveCenter = Cartographic.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch); // Begin 2nd pass to find naive radius and modify the ritter sphere. var naiveRadius = 0; for (i = 0; i < numElements; i += stride) { currentPos.x = positions[i] + center.x; currentPos.y = positions[i + 1] + center.y; currentPos.z = positions[i + 2] + center.z; // Find the furthest point from the naive center to calculate the naive radius. var r = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)); if (r > naiveRadius) { naiveRadius = r; } // Make adjustments to the Ritter Sphere to include all points. var oldCenterToPointSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)); if (oldCenterToPointSquared > radiusSquared) { var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared); // Calculate new radius to include the point that lies outside ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5; radiusSquared = ritterRadius * ritterRadius; // Calculate center of new Ritter sphere var oldToNew = oldCenterToPoint - ritterRadius; ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint; ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint; ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint; } } if (ritterRadius < naiveRadius) { Cartographic.Cartesian3.clone(ritterCenter, result.center); result.radius = ritterRadius; } else { Cartographic.Cartesian3.clone(naiveCenter, result.center); result.radius = naiveRadius; } return result; }; /** * Computes a tight-fitting bounding sphere enclosing a list of EncodedCartesian3s, where the points are * stored in parallel flat arrays in X, Y, Z, order. The bounding sphere is computed by running two * algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to * ensure a tight fit. * * @param {Number[]} [positionsHigh] An array of high bits of the encoded cartesians that the bounding sphere will enclose. Each point * is formed from three elements in the array in the order X, Y, Z. * @param {Number[]} [positionsLow] An array of low bits of the encoded cartesians that the bounding sphere will enclose. Each point * is formed from three elements in the array in the order X, Y, Z. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. * * @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article} */ BoundingSphere.fromEncodedCartesianVertices = function(positionsHigh, positionsLow, result) { if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(positionsHigh) || !when.defined(positionsLow) || positionsHigh.length !== positionsLow.length || positionsHigh.length === 0) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } var currentPos = fromPointsCurrentPos; currentPos.x = positionsHigh[0] + positionsLow[0]; currentPos.y = positionsHigh[1] + positionsLow[1]; currentPos.z = positionsHigh[2] + positionsLow[2]; var xMin = Cartographic.Cartesian3.clone(currentPos, fromPointsXMin); var yMin = Cartographic.Cartesian3.clone(currentPos, fromPointsYMin); var zMin = Cartographic.Cartesian3.clone(currentPos, fromPointsZMin); var xMax = Cartographic.Cartesian3.clone(currentPos, fromPointsXMax); var yMax = Cartographic.Cartesian3.clone(currentPos, fromPointsYMax); var zMax = Cartographic.Cartesian3.clone(currentPos, fromPointsZMax); var numElements = positionsHigh.length; var i; for (i = 0; i < numElements; i += 3) { var x = positionsHigh[i] + positionsLow[i]; var y = positionsHigh[i + 1] + positionsLow[i + 1]; var z = positionsHigh[i + 2] + positionsLow[i + 2]; currentPos.x = x; currentPos.y = y; currentPos.z = z; // Store points containing the the smallest and largest components if (x < xMin.x) { Cartographic.Cartesian3.clone(currentPos, xMin); } if (x > xMax.x) { Cartographic.Cartesian3.clone(currentPos, xMax); } if (y < yMin.y) { Cartographic.Cartesian3.clone(currentPos, yMin); } if (y > yMax.y) { Cartographic.Cartesian3.clone(currentPos, yMax); } if (z < zMin.z) { Cartographic.Cartesian3.clone(currentPos, zMin); } if (z > zMax.z) { Cartographic.Cartesian3.clone(currentPos, zMax); } } // Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.). var xSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(xMax, xMin, fromPointsScratch)); var ySpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(yMax, yMin, fromPointsScratch)); var zSpan = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(zMax, zMin, fromPointsScratch)); // Set the diameter endpoints to the largest span. var diameter1 = xMin; var diameter2 = xMax; var maxSpan = xSpan; if (ySpan > maxSpan) { maxSpan = ySpan; diameter1 = yMin; diameter2 = yMax; } if (zSpan > maxSpan) { maxSpan = zSpan; diameter1 = zMin; diameter2 = zMax; } // Calculate the center of the initial sphere found by Ritter's algorithm var ritterCenter = fromPointsRitterCenter; ritterCenter.x = (diameter1.x + diameter2.x) * 0.5; ritterCenter.y = (diameter1.y + diameter2.y) * 0.5; ritterCenter.z = (diameter1.z + diameter2.z) * 0.5; // Calculate the radius of the initial sphere found by Ritter's algorithm var radiusSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch)); var ritterRadius = Math.sqrt(radiusSquared); // Find the center of the sphere found using the Naive method. var minBoxPt = fromPointsMinBoxPt; minBoxPt.x = xMin.x; minBoxPt.y = yMin.y; minBoxPt.z = zMin.z; var maxBoxPt = fromPointsMaxBoxPt; maxBoxPt.x = xMax.x; maxBoxPt.y = yMax.y; maxBoxPt.z = zMax.z; var naiveCenter = Cartographic.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch); // Begin 2nd pass to find naive radius and modify the ritter sphere. var naiveRadius = 0; for (i = 0; i < numElements; i += 3) { currentPos.x = positionsHigh[i] + positionsLow[i]; currentPos.y = positionsHigh[i + 1] + positionsLow[i + 1]; currentPos.z = positionsHigh[i + 2] + positionsLow[i + 2]; // Find the furthest point from the naive center to calculate the naive radius. var r = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch)); if (r > naiveRadius) { naiveRadius = r; } // Make adjustments to the Ritter Sphere to include all points. var oldCenterToPointSquared = Cartographic.Cartesian3.magnitudeSquared(Cartographic.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch)); if (oldCenterToPointSquared > radiusSquared) { var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared); // Calculate new radius to include the point that lies outside ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5; radiusSquared = ritterRadius * ritterRadius; // Calculate center of new Ritter sphere var oldToNew = oldCenterToPoint - ritterRadius; ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint; ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint; ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint; } } if (ritterRadius < naiveRadius) { Cartographic.Cartesian3.clone(ritterCenter, result.center); result.radius = ritterRadius; } else { Cartographic.Cartesian3.clone(naiveCenter, result.center); result.radius = naiveRadius; } return result; }; /** * Computes a bounding sphere from the corner points of an axis-aligned bounding box. The sphere * tighly and fully encompases the box. * * @param {Cartesian3} [corner] The minimum height over the rectangle. * @param {Cartesian3} [oppositeCorner] The maximum height over the rectangle. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * // Create a bounding sphere around the unit cube * var sphere = Cesium.BoundingSphere.fromCornerPoints(new Cesium.Cartesian3(-0.5, -0.5, -0.5), new Cesium.Cartesian3(0.5, 0.5, 0.5)); */ BoundingSphere.fromCornerPoints = function(corner, oppositeCorner, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('corner', corner); Check.Check.typeOf.object('oppositeCorner', oppositeCorner); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } var center = Cartographic.Cartesian3.midpoint(corner, oppositeCorner, result.center); result.radius = Cartographic.Cartesian3.distance(center, oppositeCorner); return result; }; /** * Creates a bounding sphere encompassing an ellipsoid. * * @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * var boundingSphere = Cesium.BoundingSphere.fromEllipsoid(ellipsoid); */ BoundingSphere.fromEllipsoid = function(ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('ellipsoid', ellipsoid); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = ellipsoid.maximumRadius; return result; }; var fromBoundingSpheresScratch = new Cartographic.Cartesian3(); /** * Computes a tight-fitting bounding sphere enclosing the provided array of bounding spheres. * * @param {BoundingSphere[]} [boundingSpheres] The array of bounding spheres. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.fromBoundingSpheres = function(boundingSpheres, result) { if (!when.defined(result)) { result = new BoundingSphere(); } if (!when.defined(boundingSpheres) || boundingSpheres.length === 0) { result.center = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.ZERO, result.center); result.radius = 0.0; return result; } var length = boundingSpheres.length; if (length === 1) { return BoundingSphere.clone(boundingSpheres[0], result); } if (length === 2) { return BoundingSphere.union(boundingSpheres[0], boundingSpheres[1], result); } var positions = []; var i; for (i = 0; i < length; i++) { positions.push(boundingSpheres[i].center); } result = BoundingSphere.fromPoints(positions, result); var center = result.center; var radius = result.radius; for (i = 0; i < length; i++) { var tmp = boundingSpheres[i]; radius = Math.max(radius, Cartographic.Cartesian3.distance(center, tmp.center, fromBoundingSpheresScratch) + tmp.radius); } result.radius = radius; return result; }; var fromOrientedBoundingBoxScratchU = new Cartographic.Cartesian3(); var fromOrientedBoundingBoxScratchV = new Cartographic.Cartesian3(); var fromOrientedBoundingBoxScratchW = new Cartographic.Cartesian3(); /** * Computes a tight-fitting bounding sphere enclosing the provided oriented bounding box. * * @param {OrientedBoundingBox} orientedBoundingBox The oriented bounding box. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.fromOrientedBoundingBox = function(orientedBoundingBox, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('orientedBoundingBox', orientedBoundingBox); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } var halfAxes = orientedBoundingBox.halfAxes; var u = Matrix3.getColumn(halfAxes, 0, fromOrientedBoundingBoxScratchU); var v = Matrix3.getColumn(halfAxes, 1, fromOrientedBoundingBoxScratchV); var w = Matrix3.getColumn(halfAxes, 2, fromOrientedBoundingBoxScratchW); Cartographic.Cartesian3.add(u, v, u); Cartographic.Cartesian3.add(u, w, u); result.center = Cartographic.Cartesian3.clone(orientedBoundingBox.center, result.center); result.radius = Cartographic.Cartesian3.magnitude(u); return result; }; /** * Duplicates a BoundingSphere instance. * * @param {BoundingSphere} sphere The bounding sphere to duplicate. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined) */ BoundingSphere.clone = function(sphere, result) { if (!when.defined(sphere)) { return undefined; } if (!when.defined(result)) { return new BoundingSphere(sphere.center, sphere.radius); } result.center = Cartographic.Cartesian3.clone(sphere.center, result.center); result.radius = sphere.radius; return result; }; /** * The number of elements used to pack the object into an array. * @type {Number} */ BoundingSphere.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {BoundingSphere} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ BoundingSphere.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); var center = value.center; array[startingIndex++] = center.x; array[startingIndex++] = center.y; array[startingIndex++] = center.z; array[startingIndex] = value.radius; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {BoundingSphere} [result] The object into which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided. */ BoundingSphere.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new BoundingSphere(); } var center = result.center; center.x = array[startingIndex++]; center.y = array[startingIndex++]; center.z = array[startingIndex++]; result.radius = array[startingIndex]; return result; }; var unionScratch = new Cartographic.Cartesian3(); var unionScratchCenter = new Cartographic.Cartesian3(); /** * Computes a bounding sphere that contains both the left and right bounding spheres. * * @param {BoundingSphere} left A sphere to enclose in a bounding sphere. * @param {BoundingSphere} right A sphere to enclose in a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.union = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } var leftCenter = left.center; var leftRadius = left.radius; var rightCenter = right.center; var rightRadius = right.radius; var toRightCenter = Cartographic.Cartesian3.subtract(rightCenter, leftCenter, unionScratch); var centerSeparation = Cartographic.Cartesian3.magnitude(toRightCenter); if (leftRadius >= (centerSeparation + rightRadius)) { // Left sphere wins. left.clone(result); return result; } if (rightRadius >= (centerSeparation + leftRadius)) { // Right sphere wins. right.clone(result); return result; } // There are two tangent points, one on far side of each sphere. var halfDistanceBetweenTangentPoints = (leftRadius + centerSeparation + rightRadius) * 0.5; // Compute the center point halfway between the two tangent points. var center = Cartographic.Cartesian3.multiplyByScalar(toRightCenter, (-leftRadius + halfDistanceBetweenTangentPoints) / centerSeparation, unionScratchCenter); Cartographic.Cartesian3.add(center, leftCenter, center); Cartographic.Cartesian3.clone(center, result.center); result.radius = halfDistanceBetweenTangentPoints; return result; }; var expandScratch = new Cartographic.Cartesian3(); /** * Computes a bounding sphere by enlarging the provided sphere to contain the provided point. * * @param {BoundingSphere} sphere A sphere to expand. * @param {Cartesian3} point A point to enclose in a bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.expand = function(sphere, point, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('point', point); //>>includeEnd('debug'); result = BoundingSphere.clone(sphere, result); var radius = Cartographic.Cartesian3.magnitude(Cartographic.Cartesian3.subtract(point, result.center, expandScratch)); if (radius > result.radius) { result.radius = radius; } return result; }; /** * Determines which side of a plane a sphere is located. * * @param {BoundingSphere} sphere The bounding sphere to test. * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane * the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is * on the opposite side, and {@link Intersect.INTERSECTING} if the sphere * intersects the plane. */ BoundingSphere.intersectPlane = function(sphere, plane) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('plane', plane); //>>includeEnd('debug'); var center = sphere.center; var radius = sphere.radius; var normal = plane.normal; var distanceToPlane = Cartographic.Cartesian3.dot(normal, center) + plane.distance; if (distanceToPlane < -radius) { // The center point is negative side of the plane normal return Intersect$1.OUTSIDE; } else if (distanceToPlane < radius) { // The center point is positive side of the plane, but radius extends beyond it; partial overlap return Intersect$1.INTERSECTING; } return Intersect$1.INSIDE; }; /** * Applies a 4x4 affine transformation matrix to a bounding sphere. * * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to. * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.transform = function(sphere, transform, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('transform', transform); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center); result.radius = Matrix4.getMaximumScale(transform) * sphere.radius; return result; }; var distanceSquaredToScratch = new Cartographic.Cartesian3(); /** * Computes the estimated distance squared from the closest point on a bounding sphere to a point. * * @param {BoundingSphere} sphere The sphere. * @param {Cartesian3} cartesian The point * @returns {Number} The estimated distance squared from the bounding sphere to the point. * * @example * // Sort bounding spheres from back to front * spheres.sort(function(a, b) { * return Cesium.BoundingSphere.distanceSquaredTo(b, camera.positionWC) - Cesium.BoundingSphere.distanceSquaredTo(a, camera.positionWC); * }); */ BoundingSphere.distanceSquaredTo = function(sphere, cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); var diff = Cartographic.Cartesian3.subtract(sphere.center, cartesian, distanceSquaredToScratch); return Cartographic.Cartesian3.magnitudeSquared(diff) - sphere.radius * sphere.radius; }; /** * Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale * The transformation matrix is not verified to have a uniform scale of 1. * This method is faster than computing the general bounding sphere transform using {@link BoundingSphere.transform}. * * @param {BoundingSphere} sphere The bounding sphere to apply the transformation to. * @param {Matrix4} transform The transformation matrix to apply to the bounding sphere. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. * * @example * var modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid); * var boundingSphere = new Cesium.BoundingSphere(); * var newBoundingSphere = Cesium.BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix); */ BoundingSphere.transformWithoutScale = function(sphere, transform, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('transform', transform); //>>includeEnd('debug'); if (!when.defined(result)) { result = new BoundingSphere(); } result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center); result.radius = sphere.radius; return result; }; var scratchCartesian3 = new Cartographic.Cartesian3(); /** * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction * plus/minus the radius of the bounding sphere. *
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding sphere. * * @param {BoundingSphere} sphere The bounding sphere to calculate the distance to. * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction. */ BoundingSphere.computePlaneDistances = function(sphere, position, direction, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('position', position); Check.Check.typeOf.object('direction', direction); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Interval(); } var toCenter = Cartographic.Cartesian3.subtract(sphere.center, position, scratchCartesian3); var mag = Cartographic.Cartesian3.dot(direction, toCenter); result.start = mag - sphere.radius; result.stop = mag + sphere.radius; return result; }; var projectTo2DNormalScratch = new Cartographic.Cartesian3(); var projectTo2DEastScratch = new Cartographic.Cartesian3(); var projectTo2DNorthScratch = new Cartographic.Cartesian3(); var projectTo2DWestScratch = new Cartographic.Cartesian3(); var projectTo2DSouthScratch = new Cartographic.Cartesian3(); var projectTo2DCartographicScratch = new Cartographic.Cartographic(); var projectTo2DPositionsScratch = new Array(8); for (var n = 0; n < 8; ++n) { projectTo2DPositionsScratch[n] = new Cartographic.Cartesian3(); } var projectTo2DProjection = new GeographicProjection(); /** * Creates a bounding sphere in 2D from a bounding sphere in 3D world coordinates. * * @param {BoundingSphere} sphere The bounding sphere to transform to 2D. * @param {Object} [projection=GeographicProjection] The projection to 2D. * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.projectTo2D = function(sphere, projection, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); //>>includeEnd('debug'); projection = when.defaultValue(projection, projectTo2DProjection); var ellipsoid = projection.ellipsoid; var center = sphere.center; var radius = sphere.radius; var normal; if (Cartographic.Cartesian3.equals(center, Cartographic.Cartesian3.ZERO)) { // Bounding sphere is at the center. The geodetic surface normal is not // defined here so pick the x-axis as a fallback. normal = Cartographic.Cartesian3.clone(Cartographic.Cartesian3.UNIT_X, projectTo2DNormalScratch); } else { normal = ellipsoid.geodeticSurfaceNormal(center, projectTo2DNormalScratch); } var east = Cartographic.Cartesian3.cross(Cartographic.Cartesian3.UNIT_Z, normal, projectTo2DEastScratch); Cartographic.Cartesian3.normalize(east, east); var north = Cartographic.Cartesian3.cross(normal, east, projectTo2DNorthScratch); Cartographic.Cartesian3.normalize(north, north); Cartographic.Cartesian3.multiplyByScalar(normal, radius, normal); Cartographic.Cartesian3.multiplyByScalar(north, radius, north); Cartographic.Cartesian3.multiplyByScalar(east, radius, east); var south = Cartographic.Cartesian3.negate(north, projectTo2DSouthScratch); var west = Cartographic.Cartesian3.negate(east, projectTo2DWestScratch); var positions = projectTo2DPositionsScratch; // top NE corner var corner = positions[0]; Cartographic.Cartesian3.add(normal, north, corner); Cartographic.Cartesian3.add(corner, east, corner); // top NW corner corner = positions[1]; Cartographic.Cartesian3.add(normal, north, corner); Cartographic.Cartesian3.add(corner, west, corner); // top SW corner corner = positions[2]; Cartographic.Cartesian3.add(normal, south, corner); Cartographic.Cartesian3.add(corner, west, corner); // top SE corner corner = positions[3]; Cartographic.Cartesian3.add(normal, south, corner); Cartographic.Cartesian3.add(corner, east, corner); Cartographic.Cartesian3.negate(normal, normal); // bottom NE corner corner = positions[4]; Cartographic.Cartesian3.add(normal, north, corner); Cartographic.Cartesian3.add(corner, east, corner); // bottom NW corner corner = positions[5]; Cartographic.Cartesian3.add(normal, north, corner); Cartographic.Cartesian3.add(corner, west, corner); // bottom SW corner corner = positions[6]; Cartographic.Cartesian3.add(normal, south, corner); Cartographic.Cartesian3.add(corner, west, corner); // bottom SE corner corner = positions[7]; Cartographic.Cartesian3.add(normal, south, corner); Cartographic.Cartesian3.add(corner, east, corner); var length = positions.length; for (var i = 0; i < length; ++i) { var position = positions[i]; Cartographic.Cartesian3.add(center, position, position); var cartographic = ellipsoid.cartesianToCartographic(position, projectTo2DCartographicScratch); projection.project(cartographic, position); } result = BoundingSphere.fromPoints(positions, result); // swizzle center components center = result.center; var x = center.x; var y = center.y; var z = center.z; center.x = z; center.y = x; center.z = y; return result; }; /** * Determines whether or not a sphere is hidden from view by the occluder. * * @param {BoundingSphere} sphere The bounding sphere surrounding the occludee object. * @param {Occluder} occluder The occluder. * @returns {Boolean} true if the sphere is not visible; otherwise false. */ BoundingSphere.isOccluded = function(sphere, occluder) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('sphere', sphere); Check.Check.typeOf.object('occluder', occluder); //>>includeEnd('debug'); return !occluder.isBoundingSphereVisible(sphere); }; /** * Compares the provided BoundingSphere componentwise and returns * true if they are equal, false otherwise. * * @param {BoundingSphere} [left] The first BoundingSphere. * @param {BoundingSphere} [right] The second BoundingSphere. * @returns {Boolean} true if left and right are equal, false otherwise. */ BoundingSphere.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && Cartographic.Cartesian3.equals(left.center, right.center) && left.radius === right.radius); }; /** * Determines which side of a plane the sphere is located. * * @param {Plane} plane The plane to test against. * @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane * the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is * on the opposite side, and {@link Intersect.INTERSECTING} if the sphere * intersects the plane. */ BoundingSphere.prototype.intersectPlane = function(plane) { return BoundingSphere.intersectPlane(this, plane); }; /** * Computes the estimated distance squared from the closest point on a bounding sphere to a point. * * @param {Cartesian3} cartesian The point * @returns {Number} The estimated distance squared from the bounding sphere to the point. * * @example * // Sort bounding spheres from back to front * spheres.sort(function(a, b) { * return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC); * }); */ BoundingSphere.prototype.distanceSquaredTo = function(cartesian) { return BoundingSphere.distanceSquaredTo(this, cartesian); }; /** * The distances calculated by the vector from the center of the bounding sphere to position projected onto direction * plus/minus the radius of the bounding sphere. *
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the * closest and farthest planes from position that intersect the bounding sphere. * * @param {Cartesian3} position The position to calculate the distance from. * @param {Cartesian3} direction The direction from position. * @param {Interval} [result] A Interval to store the nearest and farthest distances. * @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction. */ BoundingSphere.prototype.computePlaneDistances = function(position, direction, result) { return BoundingSphere.computePlaneDistances(this, position, direction, result); }; /** * Determines whether or not a sphere is hidden from view by the occluder. * * @param {Occluder} occluder The occluder. * @returns {Boolean} true if the sphere is not visible; otherwise false. */ BoundingSphere.prototype.isOccluded = function(occluder) { return BoundingSphere.isOccluded(this, occluder); }; /** * Compares this BoundingSphere against the provided BoundingSphere componentwise and returns * true if they are equal, false otherwise. * * @param {BoundingSphere} [right] The right hand side BoundingSphere. * @returns {Boolean} true if they are equal, false otherwise. */ BoundingSphere.prototype.equals = function(right) { return BoundingSphere.equals(this, right); }; /** * Duplicates this BoundingSphere instance. * * @param {BoundingSphere} [result] The object onto which to store the result. * @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. */ BoundingSphere.prototype.clone = function(result) { return BoundingSphere.clone(this, result); }; /** * Computes the radius of the BoundingSphere. * @returns {Number} The radius of the BoundingSphere. */ BoundingSphere.prototype.volume = function() { var radius = this.radius; return volumeConstant * radius * radius * radius; }; exports.BoundingSphere = BoundingSphere; exports.GeographicProjection = GeographicProjection; exports.Intersect = Intersect$1; exports.Interval = Interval; exports.Matrix3 = Matrix3; exports.Matrix4 = Matrix4; });