/** * Cesium - https://github.com/AnalyticalGraphicsInc/cesium * * Copyright 2011-2017 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/AnalyticalGraphicsInc/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-fe4be337', './Cartesian2-85064f09', './BoundingSphere-775c5788', './ComponentDatatype-5862616f', './GeometryAttribute-91704ebb', './PrimitiveType-97893bc7', './GeometryAttributes-aacecde6', './IndexDatatype-9435b55f', './GeometryOffsetAttribute-ca302482', './VertexFormat-fe4db402'], function (exports, when, Check, _Math, Cartographic, Cartesian2, BoundingSphere, ComponentDatatype, GeometryAttribute, PrimitiveType, GeometryAttributes, IndexDatatype, GeometryOffsetAttribute, VertexFormat) { 'use strict'; var scratchPosition = new Cartographic.Cartesian3(); var scratchNormal = new Cartographic.Cartesian3(); var scratchTangent = new Cartographic.Cartesian3(); var scratchBitangent = new Cartographic.Cartesian3(); var scratchNormalST = new Cartographic.Cartesian3(); var defaultRadii = new Cartographic.Cartesian3(1.0, 1.0, 1.0); var cos = Math.cos; var sin = Math.sin; /** * A description of an ellipsoid centered at the origin. * * @alias EllipsoidGeometry * @constructor * * @param {Object} [options] Object with the following properties: * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks. * @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} options.slicePartitions cannot be less than three. * @exception {DeveloperError} options.stackPartitions cannot be less than three. * * @see EllipsoidGeometry#createGeometry * * @example * var ellipsoid = new Cesium.EllipsoidGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0) * }); * var geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid); */ function EllipsoidGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); var radii = when.defaultValue(options.radii, defaultRadii); var innerRadii = when.defaultValue(options.innerRadii, radii); var minimumClock = when.defaultValue(options.minimumClock, 0.0); var maximumClock = when.defaultValue(options.maximumClock, _Math.CesiumMath.TWO_PI); var minimumCone = when.defaultValue(options.minimumCone, 0.0); var maximumCone = when.defaultValue(options.maximumCone, _Math.CesiumMath.PI); var stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 64)); var slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 64)); var vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT); //>>includeStart('debug', pragmas.debug); if (slicePartitions < 3) { throw new Check.DeveloperError('options.slicePartitions cannot be less than three.'); } if (stackPartitions < 3) { throw new Check.DeveloperError('options.stackPartitions cannot be less than three.'); } //>>includeEnd('debug'); this._radii = Cartographic.Cartesian3.clone(radii); this._innerRadii = Cartographic.Cartesian3.clone(innerRadii); this._minimumClock = minimumClock; this._maximumClock = maximumClock; this._minimumCone = minimumCone; this._maximumCone = maximumCone; this._stackPartitions = stackPartitions; this._slicePartitions = slicePartitions; this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat); this._offsetAttribute = options.offsetAttribute; this._workerName = 'createEllipsoidGeometry'; } /** * The number of elements used to pack the object into an array. * @type {Number} */ EllipsoidGeometry.packedLength = 2 * (Cartographic.Cartesian3.packedLength) + VertexFormat.VertexFormat.packedLength + 7; /** * Stores the provided instance into the provided array. * * @param {EllipsoidGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ EllipsoidGeometry.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!when.defined(value)) { throw new Check.DeveloperError('value is required'); } if (!when.defined(array)) { throw new Check.DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Cartographic.Cartesian3.pack(value._radii, array, startingIndex); startingIndex += Cartographic.Cartesian3.packedLength; Cartographic.Cartesian3.pack(value._innerRadii, array, startingIndex); startingIndex += Cartographic.Cartesian3.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._minimumClock; array[startingIndex++] = value._maximumClock; array[startingIndex++] = value._minimumCone; array[startingIndex++] = value._maximumCone; array[startingIndex++] = value._stackPartitions; array[startingIndex++] = value._slicePartitions; array[startingIndex] = when.defaultValue(value._offsetAttribute, -1); return array; }; var scratchRadii = new Cartographic.Cartesian3(); var scratchInnerRadii = new Cartographic.Cartesian3(); var scratchVertexFormat = new VertexFormat.VertexFormat(); var scratchOptions = { radii : scratchRadii, innerRadii : scratchInnerRadii, vertexFormat : scratchVertexFormat, minimumClock : undefined, maximumClock : undefined, minimumCone : undefined, maximumCone : undefined, stackPartitions : undefined, slicePartitions : undefined, offsetAttribute : undefined }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipsoidGeometry} [result] The object into which to store the result. * @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided. */ EllipsoidGeometry.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(array)) { throw new Check.DeveloperError('array is required'); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); var radii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchRadii); startingIndex += Cartographic.Cartesian3.packedLength; var innerRadii = Cartographic.Cartesian3.unpack(array, startingIndex, scratchInnerRadii); startingIndex += Cartographic.Cartesian3.packedLength; var vertexFormat = VertexFormat.VertexFormat.unpack(array, startingIndex, scratchVertexFormat); startingIndex += VertexFormat.VertexFormat.packedLength; var minimumClock = array[startingIndex++]; var maximumClock = array[startingIndex++]; var minimumCone = array[startingIndex++]; var maximumCone = array[startingIndex++]; var stackPartitions = array[startingIndex++]; var slicePartitions = array[startingIndex++]; var offsetAttribute = array[startingIndex]; if (!when.defined(result)) { scratchOptions.minimumClock = minimumClock; scratchOptions.maximumClock = maximumClock; scratchOptions.minimumCone = minimumCone; scratchOptions.maximumCone = maximumCone; scratchOptions.stackPartitions = stackPartitions; scratchOptions.slicePartitions = slicePartitions; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new EllipsoidGeometry(scratchOptions); } result._radii = Cartographic.Cartesian3.clone(radii, result._radii); result._innerRadii = Cartographic.Cartesian3.clone(innerRadii, result._innerRadii); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._minimumClock = minimumClock; result._maximumClock = maximumClock; result._minimumCone = minimumCone; result._maximumCone = maximumCone; result._stackPartitions = stackPartitions; result._slicePartitions = slicePartitions; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid. * @returns {Geometry|undefined} The computed vertices and indices. */ EllipsoidGeometry.createGeometry = function(ellipsoidGeometry) { var radii = ellipsoidGeometry._radii; if ((radii.x <= 0) || (radii.y <= 0) || (radii.z <= 0)) { return; } var innerRadii = ellipsoidGeometry._innerRadii; if ((innerRadii.x <= 0) || (innerRadii.y <= 0) || innerRadii.z <= 0) { return; } var minimumClock = ellipsoidGeometry._minimumClock; var maximumClock = ellipsoidGeometry._maximumClock; var minimumCone = ellipsoidGeometry._minimumCone; var maximumCone = ellipsoidGeometry._maximumCone; var vertexFormat = ellipsoidGeometry._vertexFormat; // Add an extra slice and stack so that the number of partitions is the // number of surfaces rather than the number of joints var slicePartitions = ellipsoidGeometry._slicePartitions + 1; var stackPartitions = ellipsoidGeometry._stackPartitions + 1; slicePartitions = Math.round(slicePartitions * Math.abs(maximumClock - minimumClock) / _Math.CesiumMath.TWO_PI); stackPartitions = Math.round(stackPartitions * Math.abs(maximumCone - minimumCone) / _Math.CesiumMath.PI); if (slicePartitions < 2) { slicePartitions = 2; } if (stackPartitions < 2) { stackPartitions = 2; } var i; var j; var index = 0; // Create arrays for theta and phi. Duplicate first and last angle to // allow different normals at the intersections. var phis = [minimumCone]; var thetas = [minimumClock]; for (i = 0; i < stackPartitions; i++) { phis.push(minimumCone + i * (maximumCone - minimumCone) / (stackPartitions - 1)); } phis.push(maximumCone); for (j = 0; j < slicePartitions; j++) { thetas.push(minimumClock + j * (maximumClock - minimumClock) / (slicePartitions - 1)); } thetas.push(maximumClock); var numPhis = phis.length; var numThetas = thetas.length; // Allow for extra indices if there is an inner surface and if we need // to close the sides if the clock range is not a full circle var extraIndices = 0; var vertexMultiplier = 1.0; var hasInnerSurface = ((innerRadii.x !== radii.x) || (innerRadii.y !== radii.y) || innerRadii.z !== radii.z); var isTopOpen = false; var isBotOpen = false; var isClockOpen = false; if (hasInnerSurface) { vertexMultiplier = 2.0; if (minimumCone > 0.0) { isTopOpen = true; extraIndices += (slicePartitions - 1); } if (maximumCone < Math.PI) { isBotOpen = true; extraIndices += (slicePartitions - 1); } if ((maximumClock - minimumClock) % _Math.CesiumMath.TWO_PI) { isClockOpen = true; extraIndices += ((stackPartitions - 1) * 2) + 1; } else { extraIndices += 1; } } var vertexCount = numThetas * numPhis * vertexMultiplier; var positions = new Float64Array(vertexCount * 3); var isInner = GeometryOffsetAttribute.arrayFill(new Array(vertexCount), false); var negateNormal = GeometryOffsetAttribute.arrayFill(new Array(vertexCount), false); // Multiply by 6 because there are two triangles per sector var indexCount = slicePartitions * stackPartitions * vertexMultiplier; var numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier); var indices = IndexDatatype.IndexDatatype.createTypedArray(indexCount, numIndices); var normals = (vertexFormat.normal) ? new Float32Array(vertexCount * 3) : undefined; var tangents = (vertexFormat.tangent) ? new Float32Array(vertexCount * 3) : undefined; var bitangents = (vertexFormat.bitangent) ? new Float32Array(vertexCount * 3) : undefined; var st = (vertexFormat.st) ? new Float32Array(vertexCount * 2) : undefined; // Calculate sin/cos phi var sinPhi = new Array(numPhis); var cosPhi = new Array(numPhis); for (i = 0; i < numPhis; i++) { sinPhi[i] = sin(phis[i]); cosPhi[i] = cos(phis[i]); } // Calculate sin/cos theta var sinTheta = new Array(numThetas); var cosTheta = new Array(numThetas); for (j = 0; j < numThetas; j++) { cosTheta[j] = cos(thetas[j]); sinTheta[j] = sin(thetas[j]); } // Create outer surface for (i = 0; i < numPhis; i++) { for (j = 0; j < numThetas; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } // Create inner surface var vertexIndex = vertexCount / 2.0; if (hasInnerSurface) { for (i = 0; i < numPhis; i++) { for (j = 0; j < numThetas; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; // Keep track of which vertices are the inner and which ones // need the normal to be negated isInner[vertexIndex] = true; if (i > 0 && i !== (numPhis - 1) && j !== 0 && j !== (numThetas - 1)) { negateNormal[vertexIndex] = true; } vertexIndex++; } } } // Create indices for outer surface index = 0; var topOffset; var bottomOffset; for (i = 1; i < (numPhis - 2); i++) { topOffset = i * numThetas; bottomOffset = (i + 1) * numThetas; for (j = 1; j < numThetas - 2; j++) { indices[index++] = bottomOffset + j; indices[index++] = bottomOffset + j + 1; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = topOffset + j; } } // Create indices for inner surface if (hasInnerSurface) { var offset = numPhis * numThetas; for (i = 1; i < (numPhis - 2); i++) { topOffset = offset + i * numThetas; bottomOffset = offset + (i + 1) * numThetas; for (j = 1; j < numThetas - 2; j++) { indices[index++] = bottomOffset + j; indices[index++] = topOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j + 1; } } } var outerOffset; var innerOffset; if (hasInnerSurface) { if (isTopOpen) { // Connect the top of the inner surface to the top of the outer surface innerOffset = numPhis * numThetas; for (i = 1; i < numThetas - 2; i++) { indices[index++] = i; indices[index++] = i + 1; indices[index++] = innerOffset + i + 1; indices[index++] = i; indices[index++] = innerOffset + i + 1; indices[index++] = innerOffset + i; } } if (isBotOpen) { // Connect the bottom of the inner surface to the bottom of the outer surface outerOffset = numPhis * numThetas - numThetas; innerOffset = numPhis * numThetas * vertexMultiplier - numThetas; for (i = 1; i < numThetas - 2; i++) { indices[index++] = outerOffset + i + 1; indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; indices[index++] = outerOffset + i + 1; indices[index++] = innerOffset + i; indices[index++] = innerOffset + i + 1; } } } // Connect the edges if clock is not closed if (isClockOpen) { for (i = 1; i < numPhis - 2; i++) { innerOffset = numThetas * numPhis + (numThetas * i); outerOffset = numThetas * i; indices[index++] = innerOffset; indices[index++] = outerOffset + numThetas; indices[index++] = outerOffset; indices[index++] = innerOffset; indices[index++] = innerOffset + numThetas; indices[index++] = outerOffset + numThetas; } for (i = 1; i < numPhis - 2; i++) { innerOffset = numThetas * numPhis + (numThetas * (i + 1)) - 1; outerOffset = numThetas * (i + 1) - 1; indices[index++] = outerOffset + numThetas; indices[index++] = innerOffset; indices[index++] = outerOffset; indices[index++] = outerOffset + numThetas; indices[index++] = innerOffset + numThetas; indices[index++] = innerOffset; } } var attributes = new GeometryAttributes.GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute : 3, values : positions }); } var stIndex = 0; var normalIndex = 0; var tangentIndex = 0; var bitangentIndex = 0; var vertexCountHalf = vertexCount / 2.0; var ellipsoid; var ellipsoidOuter = Cartesian2.Ellipsoid.fromCartesian3(radii); var ellipsoidInner = Cartesian2.Ellipsoid.fromCartesian3(innerRadii); if (vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) { for (i = 0; i < vertexCount; i++) { ellipsoid = (isInner[i]) ? ellipsoidInner : ellipsoidOuter; var position = Cartographic.Cartesian3.fromArray(positions, i * 3, scratchPosition); var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal); if (negateNormal[i]) { Cartographic.Cartesian3.negate(normal, normal); } if (vertexFormat.st) { var normalST = Cartesian2.Cartesian2.negate(normal, scratchNormalST); st[stIndex++] = (Math.atan2(normalST.y, normalST.x) / _Math.CesiumMath.TWO_PI) + 0.5; st[stIndex++] = (Math.asin(normal.z) / Math.PI) + 0.5; } if (vertexFormat.normal) { normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; } if (vertexFormat.tangent || vertexFormat.bitangent) { var tangent = scratchTangent; // Use UNIT_X for the poles var tangetOffset = 0; var unit; if (isInner[i]) { tangetOffset = vertexCountHalf; } if ((!isTopOpen && (i >= tangetOffset && i < (tangetOffset + numThetas * 2)))) { unit = Cartographic.Cartesian3.UNIT_X; } else { unit = Cartographic.Cartesian3.UNIT_Z; } Cartographic.Cartesian3.cross(unit, normal, tangent); Cartographic.Cartesian3.normalize(tangent, tangent); if (vertexFormat.tangent) { tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; } if (vertexFormat.bitangent) { var bitangent = Cartographic.Cartesian3.cross(normal, tangent, scratchBitangent); Cartographic.Cartesian3.normalize(bitangent, bitangent); bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; } } } if (vertexFormat.st) { attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 2, values : st }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : normals }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : tangents }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute : 3, values : bitangents }); } } if (when.defined(ellipsoidGeometry._offsetAttribute)) { var length = positions.length; var applyOffset = new Uint8Array(length / 3); var offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue); attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype : ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute : 1, values : applyOffset }); } return new GeometryAttribute.Geometry({ attributes : attributes, indices : indices, primitiveType : PrimitiveType.PrimitiveType.TRIANGLES, boundingSphere : BoundingSphere.BoundingSphere.fromEllipsoid(ellipsoidOuter), offsetAttribute : ellipsoidGeometry._offsetAttribute }); }; var unitEllipsoidGeometry; /** * Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere. * @returns {Geometry} The computed vertices and indices. * * @private */ EllipsoidGeometry.getUnitEllipsoid = function() { if (!when.defined(unitEllipsoidGeometry)) { unitEllipsoidGeometry = EllipsoidGeometry.createGeometry((new EllipsoidGeometry({ radii : new Cartographic.Cartesian3(1.0, 1.0, 1.0), vertexFormat : VertexFormat.VertexFormat.POSITION_ONLY }))); } return unitEllipsoidGeometry; }; exports.EllipsoidGeometry = EllipsoidGeometry; });