Compare commits
36 Commits
master
...
feature_DU
Author | SHA1 | Date | |
---|---|---|---|
|
44de774d4e | ||
|
f90eb75c3b | ||
|
2913bc722c | ||
df8736bcb1 | |||
33fd534579 | |||
df358a4e3a | |||
71997776cf | |||
b4c7a6c6cb | |||
|
b6dce9e5cf | ||
8281971cee | |||
|
f86733cc91 | ||
295d30b49f | |||
618c799818 | |||
3a9d6c5e7e | |||
|
812cfd725f | ||
|
267332bad5 | ||
|
f1a9e75917 | ||
|
791bfb85d2 | ||
|
feeda6a550 | ||
9a89e11ef9 | |||
|
a99c3b275d | ||
|
43a8668e7c | ||
756d23229c | |||
08ab697a02 | |||
|
ca2403b323 | ||
19da00146e | |||
15df28b3b4 | |||
eb55c5b784 | |||
|
a018a8f54d | ||
|
33b32a6c92 | ||
|
a6d2f87095 | ||
d3a08b35f7 | |||
733500850e | |||
2db802c899 | |||
d82f308fed | |||
|
e2dc220aaf |
@ -1,20 +1,70 @@
|
||||
using OpenCvSharp;
|
||||
using OpenCvSharp.Flann;
|
||||
using Sunny.UI.Win32;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Security.Cryptography;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using static System.Net.Mime.MediaTypeNames;
|
||||
using Point = OpenCvSharp.Point;
|
||||
using Size = OpenCvSharp.Size;
|
||||
|
||||
|
||||
using System;
|
||||
using OpenCvSharp;
|
||||
using OpenCvSharp.Features2D;
|
||||
using OpenCvSharp.Flann;
|
||||
using System.Drawing;
|
||||
|
||||
namespace HisenceYoloDetection
|
||||
{
|
||||
public static class CheckDiffSciHelper
|
||||
{
|
||||
|
||||
|
||||
public static Mat ProcessImage(Mat image, Rect fillRect)
|
||||
{
|
||||
// 获取图像尺寸
|
||||
int width = image.Width;
|
||||
int height = image.Height;
|
||||
|
||||
// 定义左下角 30x30 矩形框
|
||||
int rectSize = 30;
|
||||
int rectX = 0;
|
||||
int rectY = height - rectSize; // 确保是左下角
|
||||
|
||||
// 检查左下角矩形框是否在图像范围内
|
||||
if (rectY < 0 || rectX < 0 || rectSize > width || rectSize > height)
|
||||
{
|
||||
Console.WriteLine("图像尺寸不足以获取指定区域");
|
||||
return image;
|
||||
}
|
||||
|
||||
// 定义感兴趣区域 (ROI) 并计算其平均颜色
|
||||
Rect roi = new Rect(rectX, rectY, rectSize, rectSize);
|
||||
Mat roiMat = new Mat(image, roi);
|
||||
Scalar meanColor = Cv2.Mean(roiMat);
|
||||
|
||||
// 创建 Scalar 类型的颜色填充
|
||||
Scalar fillColor = new Scalar(meanColor.Val0, meanColor.Val1, meanColor.Val2);
|
||||
|
||||
// 修改 fillRect 的 Y 和 Height 属性以覆盖整个图像的高度
|
||||
fillRect.Y = 0; // 起始位置为顶部
|
||||
fillRect.Height = height; // 高度覆盖整个图像
|
||||
|
||||
// 检查填充矩形是否在图像范围内
|
||||
if (fillRect.X < 0 || fillRect.X + fillRect.Width > width)
|
||||
{
|
||||
Console.WriteLine("填充区域超出图像范围");
|
||||
return image;
|
||||
}
|
||||
|
||||
// 使用 OpenCV 的 rectangle 函数进行填充
|
||||
Cv2.Rectangle(image, fillRect.TopLeft, fillRect.BottomRight, fillColor, Cv2.FILLED);
|
||||
|
||||
return image;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
///
|
||||
/// </summary>
|
||||
@ -22,9 +72,9 @@ namespace HisenceYoloDetection
|
||||
/// <param name="path2">要对比的图像</param>
|
||||
/// <param name="IfWhiteWord"> 白板黑字为true </param>
|
||||
/// <param name="saveDir">存储路径</param>
|
||||
public static bool CheckDiffSci(string path1, Mat MatDet,Rect sqlrect,Rect detrect, bool IfWhiteWord, string saveDir)
|
||||
public static bool CheckDiffSci(string path1, Mat MatDet, ref Mat ResultMat,Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
|
||||
{
|
||||
// 读取和处理第一张图片
|
||||
// 读取和处理第一张图片。。
|
||||
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
|
||||
if (img1.Empty())
|
||||
{
|
||||
@ -32,11 +82,12 @@ namespace HisenceYoloDetection
|
||||
return false;
|
||||
}
|
||||
// Cv2.Resize(img1, img1, new Size(550, 270));
|
||||
img1 = ProcessImage(img1, sqlrect);
|
||||
Mat gimg1 = new Mat();
|
||||
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
|
||||
Mat thr1 = new Mat();
|
||||
|
||||
if(IfWhiteWord)
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
}
|
||||
@ -50,12 +101,16 @@ namespace HisenceYoloDetection
|
||||
|
||||
// 读取和处理第二张图片
|
||||
Mat img2 = MatDet.Clone();
|
||||
ResultMat= MatDet.Clone();
|
||||
if (img2.Empty())
|
||||
{
|
||||
// Console.WriteLine($"Error loading image {path2}");
|
||||
return false;
|
||||
}
|
||||
// Cv2.Resize(img2, img2, new Size(550, 270));
|
||||
img2 = ProcessImage(img2, detrect);
|
||||
Rect bottomleftRect= new Rect(0,img1.Height-30,30,30);
|
||||
Scalar avgColor1 = Cv2.Mean(new Mat(img1,bottomleftRect));
|
||||
Mat gimg2 = new Mat();
|
||||
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
|
||||
Mat thr2 = new Mat();
|
||||
@ -68,14 +123,15 @@ namespace HisenceYoloDetection
|
||||
{
|
||||
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
}
|
||||
// Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
|
||||
|
||||
|
||||
//Rect area2 = new Rect(148,30,229,222);
|
||||
sqlrect.Width += 20;
|
||||
sqlrect.Height+= 100;
|
||||
detrect.Width += 20;
|
||||
detrect.Height+=100;
|
||||
Mat matCutblack1 = new Mat(thr1, sqlrect);
|
||||
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
matCutblack1.SetTo(Scalar.Black);
|
||||
@ -95,17 +151,17 @@ namespace HisenceYoloDetection
|
||||
}
|
||||
Cv2.Resize(thr1, thr1, new Size(550, 270));
|
||||
Cv2.Resize(thr2, thr2, new Size(550, 270));
|
||||
DateTime dt= DateTime.Now;
|
||||
string filename= dt.Year.ToString() + dt.Month.ToString() + dt.Day.ToString() + dt.Hour.ToString() + dt.Minute.ToString() + dt.Millisecond.ToString();
|
||||
DateTime dt = DateTime.Now;
|
||||
string filename = SN;
|
||||
|
||||
string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename+"_thr1.png");
|
||||
// string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
|
||||
// 保存结果
|
||||
|
||||
Cv2.ImWrite(savePath4, thr1);
|
||||
string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename+"_thr2.png");
|
||||
//Cv2.ImWrite(savePath4, thr1);
|
||||
//string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
|
||||
// 保存结果
|
||||
|
||||
Cv2.ImWrite(savePath3, thr2);
|
||||
//Cv2.ImWrite(savePath3, thr2);
|
||||
|
||||
// 创建卷积核
|
||||
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
|
||||
@ -125,6 +181,255 @@ namespace HisenceYoloDetection
|
||||
//裁剪才行
|
||||
|
||||
|
||||
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
|
||||
////保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
//Cv2.ImWrite(savePath2, final_result1);
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result2.png");
|
||||
////保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
//Cv2.ImWrite(savePath, final_result2);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 计算图像差异
|
||||
Mat devIMG = new Mat();
|
||||
Mat devIMG_ = new Mat();
|
||||
Cv2.Subtract(final_result1, final_result2, devIMG);
|
||||
Cv2.Subtract(final_result2, final_result1, devIMG_);
|
||||
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
|
||||
//// 保存结果
|
||||
|
||||
//Cv2.ImWrite(savePathd, devIMG);
|
||||
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
|
||||
//// 保存结果
|
||||
|
||||
//Cv2.ImWrite(savePathd1, devIMG_);
|
||||
// 对差异图像应用阈值
|
||||
Cv2.Threshold(devIMG, devIMG, 20, 255, ThresholdTypes.Binary);
|
||||
Cv2.Threshold(devIMG_, devIMG_, 20, 255, ThresholdTypes.Binary);
|
||||
|
||||
// 结合差异
|
||||
Mat sumIMG = new Mat();
|
||||
Cv2.Add(devIMG, devIMG_, sumIMG);
|
||||
|
||||
// 应用形态学操作
|
||||
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
|
||||
Mat blackhatImg = new Mat();
|
||||
Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
|
||||
|
||||
// 处理轮廓和保存结果
|
||||
Point[][] contours = new Point[10000][];
|
||||
Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
|
||||
bool isMatch = true;
|
||||
foreach (var contour in contours)
|
||||
{
|
||||
if (Cv2.ContourArea(contour) <= 500)
|
||||
{
|
||||
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
|
||||
// 框选轮廓
|
||||
//string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
//Cv2.ImWrite(savePath2, img2);
|
||||
//string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// Cv2.ImWrite(savePath, blackhatImg);
|
||||
}
|
||||
else
|
||||
{
|
||||
Rect boundingRect = Cv2.BoundingRect(contour);
|
||||
Cv2.Resize(img2, img2, new Size(550, 270));
|
||||
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
|
||||
isMatch = false;
|
||||
string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ng",filename + "_Rect.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
Cv2.ImWrite(savePath2, img2);
|
||||
CheckDiffSciHelper1.ResizeImage(savePath2, savePath2, 640, 480, 75);
|
||||
|
||||
ResultMat = img2.Clone();
|
||||
string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ng", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
Cv2.ImWrite(savePath, blackhatImg);
|
||||
}
|
||||
}
|
||||
|
||||
// 新增的白色面积占比判断
|
||||
double whiteArea1 = Cv2.CountNonZero(thr1);
|
||||
double whiteArea2 = Cv2.CountNonZero(thr2);
|
||||
double ratio1 = whiteArea1 / (thr1.Rows * thr1.Cols);
|
||||
double ratio2 = whiteArea2 / (thr2.Rows * thr2.Cols);
|
||||
|
||||
if (Math.Abs(ratio1 - ratio2) >= 0.90)
|
||||
{
|
||||
isMatch = true;
|
||||
}
|
||||
|
||||
return isMatch;
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static Rect strChangeRect(string strrect)
|
||||
{
|
||||
if (!string.IsNullOrEmpty(strrect))
|
||||
{
|
||||
string[] rectstr = strrect.Split(",");
|
||||
int areaX = int.Parse(rectstr[0]);
|
||||
int areaY = int.Parse(rectstr[1]);
|
||||
int areaWidth = int.Parse(rectstr[2]);
|
||||
int areaHeight = int.Parse(rectstr[3]);
|
||||
|
||||
Rect rect = new Rect(areaX, areaY, areaWidth, areaHeight);
|
||||
return rect;
|
||||
}
|
||||
else
|
||||
{
|
||||
return new Rect(0, 0, 0, 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public static string rectChangeStr(Rect area)
|
||||
{
|
||||
string[] rectsql = new string[4];
|
||||
rectsql[0] = Convert.ToString(area.X);
|
||||
rectsql[1] = Convert.ToString(area.Y);
|
||||
rectsql[2] = Convert.ToString(area.Width);
|
||||
rectsql[3] = Convert.ToString(area.Height);
|
||||
|
||||
string strrect = rectsql.Join(",");
|
||||
return strrect;
|
||||
}
|
||||
public static class CheckDiffSciHelper1
|
||||
{
|
||||
/// <summary>
|
||||
///
|
||||
/// </summary>
|
||||
/// <param name="path1">标准图像</param>
|
||||
/// <param name="path2">要对比的图像</param>
|
||||
/// <param name="IfWhiteWord"> 白板黑字为true </param>
|
||||
/// <param name="saveDir">存储路径</param>
|
||||
public static bool CheckDiffSci(string path1, Mat MatDet, Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
|
||||
{
|
||||
// 读取和处理第一张图片
|
||||
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
|
||||
|
||||
if (img1.Empty())
|
||||
{
|
||||
Console.WriteLine($"Error loading image {path1}");
|
||||
return false;
|
||||
}
|
||||
// Cv2.Resize(img1, img1, new Size(550, 270));
|
||||
img1 = RemoveBorders(img1);
|
||||
Mat gimg1 = new Mat();
|
||||
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
|
||||
Mat thr1 = new Mat();
|
||||
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
}
|
||||
else
|
||||
{
|
||||
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// 读取和处理第二张图片
|
||||
Mat img2 = MatDet.Clone();
|
||||
if (img2.Empty())
|
||||
{
|
||||
// Console.WriteLine($"Error loading image {path2}");
|
||||
return false;
|
||||
}
|
||||
// Cv2.Resize(img2, img2, new Size(550, 270));
|
||||
img2 = RemoveBorders(img2);
|
||||
Mat gimg2 = new Mat();
|
||||
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
|
||||
Mat thr2 = new Mat();
|
||||
//Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
}
|
||||
else
|
||||
{
|
||||
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
}
|
||||
|
||||
|
||||
//Rect area2 = new Rect(148,30,229,222);
|
||||
sqlrect.Width += 20;
|
||||
sqlrect.Height += 20;
|
||||
detrect.Width += 20;
|
||||
detrect.Height += 20;
|
||||
Mat matCutblack1 = new Mat(thr1, sqlrect);
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
matCutblack1.SetTo(Scalar.Black);
|
||||
}
|
||||
else
|
||||
{
|
||||
matCutblack1.SetTo(Scalar.Black);
|
||||
}
|
||||
Mat matCutblack2 = new Mat(thr2, detrect);
|
||||
if (IfWhiteWord)
|
||||
{
|
||||
matCutblack2.SetTo(Scalar.Black);
|
||||
}
|
||||
else
|
||||
{
|
||||
matCutblack2.SetTo(Scalar.Black);
|
||||
}
|
||||
Cv2.Resize(thr1, thr1, new Size(845, 498));
|
||||
Cv2.Resize(thr2, thr2, new Size(845, 498));
|
||||
DateTime dt = DateTime.Now;
|
||||
string filename = SN;
|
||||
|
||||
//string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
|
||||
// 保存结果
|
||||
|
||||
//Cv2.ImWrite(savePath4, thr1);
|
||||
// string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
|
||||
// 保存结果
|
||||
|
||||
// Cv2.ImWrite(savePath3, thr2);
|
||||
|
||||
// 创建卷积核
|
||||
|
||||
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
|
||||
filter1.Row(7).SetTo(new Scalar(0.025));
|
||||
filter1.Col(7).SetTo(new Scalar(0.025));
|
||||
|
||||
|
||||
|
||||
// 应用卷积
|
||||
Mat final_result1 = new Mat();
|
||||
Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
|
||||
//Cv2.Filter2D(final_result1, final_result1, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
|
||||
Mat final_result2 = new Mat();
|
||||
Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
|
||||
//Cv2.Filter2D(final_result2, final_result2, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
//裁剪才行
|
||||
|
||||
|
||||
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
|
||||
//// 保存结果
|
||||
////string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
@ -145,15 +450,25 @@ namespace HisenceYoloDetection
|
||||
Mat devIMG_ = new Mat();
|
||||
Cv2.Subtract(final_result1, final_result2, devIMG);
|
||||
Cv2.Subtract(final_result2, final_result1, devIMG_);
|
||||
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
|
||||
// 保存结果
|
||||
|
||||
// Cv2.ImWrite(savePathd, devIMG);
|
||||
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
|
||||
// 保存结果
|
||||
|
||||
//Cv2.ImWrite(savePathd1, devIMG_);
|
||||
// 对差异图像应用阈值
|
||||
Cv2.Threshold(devIMG, devIMG, 50, 255, ThresholdTypes.Binary);
|
||||
Cv2.Threshold(devIMG_, devIMG_, 50, 255, ThresholdTypes.Binary);
|
||||
Cv2.Threshold(devIMG, devIMG, 8, 255, ThresholdTypes.Binary);
|
||||
Cv2.Threshold(devIMG_, devIMG_, 8, 255, ThresholdTypes.Binary);
|
||||
|
||||
// 结合差异
|
||||
Mat sumIMG = new Mat();
|
||||
Cv2.Add(devIMG, devIMG_, sumIMG);
|
||||
//string savePaths = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "sumIMG.png");
|
||||
// 保存结果
|
||||
|
||||
//Cv2.ImWrite(savePaths, sumIMG);
|
||||
// 应用形态学操作
|
||||
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
|
||||
Mat blackhatImg = new Mat();
|
||||
@ -165,7 +480,7 @@ namespace HisenceYoloDetection
|
||||
bool isMatch = true;
|
||||
foreach (var contour in contours)
|
||||
{
|
||||
if (Cv2.ContourArea(contour) <= 100)
|
||||
if (Cv2.ContourArea(contour) <= 500)
|
||||
{
|
||||
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
|
||||
// 框选轮廓
|
||||
@ -175,168 +490,142 @@ namespace HisenceYoloDetection
|
||||
{
|
||||
Rect boundingRect = Cv2.BoundingRect(contour);
|
||||
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
|
||||
isMatch= false;
|
||||
isMatch = false;
|
||||
}
|
||||
}
|
||||
|
||||
string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename+"_Rect.png");
|
||||
string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
Cv2.ImWrite(savePath2, img2);
|
||||
string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename+"_diff.png");
|
||||
//ResizeImage(savePath2, savePath2, 640, 480, 75);
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
|
||||
// 保存结果
|
||||
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
Cv2.ImWrite(savePath, blackhatImg);
|
||||
//Cv2.ImWrite(savePath, blackhatImg);
|
||||
return isMatch;
|
||||
}
|
||||
|
||||
public static Rect strChangeRect(string strrect)
|
||||
public static void ResizeImage(string inputPath, string outputPath, int newWidth, int newHeight, int quality)
|
||||
{
|
||||
if (!string.IsNullOrEmpty(strrect))
|
||||
// 加载原始图像
|
||||
using (Mat originalImage = Cv2.ImRead(inputPath))
|
||||
{
|
||||
string[] rectstr = strrect.Split(",");
|
||||
int areaX = int.Parse(rectstr[0]);
|
||||
int areaY = int.Parse(rectstr[1]);
|
||||
int areaWidth = int.Parse(rectstr[2]);
|
||||
int areaHeight = int.Parse(rectstr[3]);
|
||||
// 创建一个Mat对象用于存储缩放后的图像
|
||||
using (Mat resizedImage = new Mat())
|
||||
{
|
||||
// 缩放图像
|
||||
Cv2.Resize(originalImage, resizedImage, new OpenCvSharp.Size(newWidth, newHeight));
|
||||
|
||||
Rect rect = new Rect(areaX, areaY, areaWidth, areaHeight);
|
||||
return rect;
|
||||
}else
|
||||
{
|
||||
return new Rect(0,0,0, 0);
|
||||
// 保存图像为JPEG格式,并设置压缩质量
|
||||
SaveJpeg(outputPath, resizedImage, quality);
|
||||
Console.WriteLine($"Image saved to {outputPath}");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public static string rectChangeStr(Rect area)
|
||||
static void SaveJpeg(string path, Mat image, int quality)
|
||||
{
|
||||
string[] rectsql = new string[4];
|
||||
rectsql[0] = Convert.ToString(area.X);
|
||||
rectsql[1] = Convert.ToString(area.Y);
|
||||
rectsql[2] = Convert.ToString(area.Width);
|
||||
rectsql[3] = Convert.ToString(area.Height);
|
||||
// 设置JPEG编码参数
|
||||
var encodeParams = new[] { new ImageEncodingParam(ImwriteFlags.JpegQuality, quality) };
|
||||
|
||||
string strrect = rectsql.Join(",");
|
||||
return strrect;
|
||||
// 保存图像
|
||||
Cv2.ImWrite(path, image, encodeParams);
|
||||
}
|
||||
//public static void CheckDiffSci(string path1, string path2, bool IfWhiteWord, string saveDir)
|
||||
//{
|
||||
// // 读取和处理第一张图片
|
||||
// Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
|
||||
// if (img1.Empty())
|
||||
// {
|
||||
// Console.WriteLine($"Error loading image {path1}");
|
||||
// return;
|
||||
// }
|
||||
// Cv2.Resize(img1, img1, new Size(550, 270));
|
||||
// Mat gimg1 = new Mat();
|
||||
// Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
|
||||
// Mat thr1 = new Mat();
|
||||
static Mat RemoveBorders(Mat image)
|
||||
{
|
||||
// 将图像转换为灰度图
|
||||
Mat grayImage = new Mat();
|
||||
Cv2.CvtColor(image, grayImage, ColorConversionCodes.BGR2GRAY);
|
||||
|
||||
// if (IfWhiteWord)
|
||||
// {
|
||||
// Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
// }
|
||||
// 使用自适应二值化将图像变为黑白图
|
||||
Mat binaryImage = new Mat();
|
||||
Cv2.AdaptiveThreshold(grayImage, binaryImage, 255, AdaptiveThresholdTypes.MeanC, ThresholdTypes.Binary, 11, 2);
|
||||
|
||||
// 反转颜色
|
||||
Mat invertedBinaryImage = new Mat();
|
||||
Cv2.BitwiseNot(binaryImage, invertedBinaryImage);
|
||||
|
||||
// string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_thr1.png");
|
||||
// // 保存结果
|
||||
// //string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// Cv2.ImWrite(savePath4, thr1);
|
||||
// 查找轮廓
|
||||
Point[][] contours;
|
||||
HierarchyIndex[] hierarchy;
|
||||
Cv2.FindContours(invertedBinaryImage, out contours, out hierarchy, RetrievalModes.External, ContourApproximationModes.ApproxSimple);
|
||||
|
||||
// // 读取和处理第二张图片
|
||||
// Mat img2 = Cv2.ImRead(path2, ImreadModes.Color);
|
||||
// if (img2.Empty())
|
||||
// {
|
||||
// Console.WriteLine($"Error loading image {path2}");
|
||||
// return;
|
||||
// }
|
||||
// Cv2.Resize(img2, img2, new Size(550, 270));
|
||||
// Mat gimg2 = new Mat();
|
||||
// Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
|
||||
// Mat thr2 = new Mat();
|
||||
// //Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
// if (IfWhiteWord)
|
||||
// {
|
||||
// Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
// }
|
||||
// // Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
|
||||
|
||||
// string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_thr2.png");
|
||||
// // 保存结果
|
||||
// //string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// Cv2.ImWrite(savePath3, thr2);
|
||||
|
||||
// // 创建卷积核
|
||||
// Mat filter1 = new Mat(17, 17, MatType.CV_32F, new Scalar(0));
|
||||
// filter1.Row(8).SetTo(new Scalar(0.025));
|
||||
// filter1.Col(8).SetTo(new Scalar(0.025));
|
||||
|
||||
// // 应用卷积
|
||||
// Mat final_result1 = new Mat();
|
||||
// Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
// Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
// Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
|
||||
// Mat final_result2 = new Mat();
|
||||
// Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
// Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
// Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
|
||||
|
||||
// // 计算图像差异
|
||||
// Mat devIMG = new Mat();
|
||||
// Mat devIMG_ = new Mat();
|
||||
// Cv2.Subtract(final_result1, final_result2, devIMG);
|
||||
// Cv2.Subtract(final_result2, final_result1, devIMG_);
|
||||
|
||||
// // 对差异图像应用阈值
|
||||
// Cv2.Threshold(devIMG, devIMG, 50, 255, ThresholdTypes.Binary);
|
||||
// Cv2.Threshold(devIMG_, devIMG_, 50, 255, ThresholdTypes.Binary);
|
||||
|
||||
// // 结合差异
|
||||
// Mat sumIMG = new Mat();
|
||||
// Cv2.Add(devIMG, devIMG_, sumIMG);
|
||||
|
||||
// // 应用形态学操作
|
||||
// Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
|
||||
// Mat blackhatImg = new Mat();
|
||||
// Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
|
||||
|
||||
// // 处理轮廓和保存结果
|
||||
// Point[][] contours = new Point[10000][];
|
||||
// Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
|
||||
|
||||
// foreach (var contour in contours)
|
||||
// {
|
||||
// if (Cv2.ContourArea(contour) <= 100)
|
||||
// {
|
||||
// Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
|
||||
// // 框选轮廓
|
||||
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// Rect boundingRect = Cv2.BoundingRect(contour);
|
||||
// Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
|
||||
// }
|
||||
// }
|
||||
// string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_Rect.png");
|
||||
// // 保存结果
|
||||
// //string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// Cv2.ImWrite(savePath2, img2);
|
||||
// string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// // 保存结果
|
||||
// //string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
|
||||
// Cv2.ImWrite(savePath, blackhatImg);
|
||||
//}
|
||||
// 找到包含最大面积的轮廓
|
||||
double maxArea = 0;
|
||||
Point[] maxContour = null;
|
||||
foreach (var contour in contours)
|
||||
{
|
||||
double area = Cv2.ContourArea(contour);
|
||||
if (area > maxArea)
|
||||
{
|
||||
maxArea = area;
|
||||
maxContour = contour;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maxContour == null)
|
||||
{
|
||||
Console.WriteLine("未找到有效轮廓!");
|
||||
return image;
|
||||
}
|
||||
|
||||
// 找到平行四边形的四个顶点
|
||||
Point[] approx = Cv2.ApproxPolyDP(maxContour, Cv2.ArcLength(maxContour, true) * 0.02, true);
|
||||
Point2f[] srcPoints = approx.Select(p => new Point2f(p.X, p.Y)).ToArray();
|
||||
|
||||
if (srcPoints.Length != 4)
|
||||
{
|
||||
Console.WriteLine("未找到平行四边形的四个顶点!");
|
||||
return image;
|
||||
}
|
||||
|
||||
// 按顺时针顺序对顶点进行排序
|
||||
srcPoints = OrderPoints(srcPoints);
|
||||
|
||||
// 确定目标图像的四个顶点
|
||||
Point2f[] dstPoints = new Point2f[]
|
||||
{
|
||||
new Point2f(0, 0),
|
||||
new Point2f(image.Width - 1, 0),
|
||||
new Point2f(image.Width - 1, image.Height - 1),
|
||||
new Point2f(0, image.Height - 1)
|
||||
};
|
||||
|
||||
// 计算透视变换矩阵
|
||||
Mat transformMatrix = Cv2.GetPerspectiveTransform(srcPoints, dstPoints);
|
||||
|
||||
// 应用透视变换
|
||||
Mat warpedImage = new Mat();
|
||||
Cv2.WarpPerspective(image, warpedImage, transformMatrix, new Size(image.Width, image.Height));
|
||||
|
||||
return warpedImage;
|
||||
}
|
||||
|
||||
private static Point2f[] OrderPoints(Point2f[] points)
|
||||
{
|
||||
// 对顶点进行排序,顺时针顺序
|
||||
Point2f[] orderedPoints = new Point2f[4];
|
||||
|
||||
// 计算质心
|
||||
Point2f center = new Point2f(points.Average(p => p.X), points.Average(p => p.Y));
|
||||
|
||||
foreach (var point in points)
|
||||
{
|
||||
if (point.X < center.X && point.Y < center.Y)
|
||||
orderedPoints[0] = point; // 左上
|
||||
else if (point.X > center.X && point.Y < center.Y)
|
||||
orderedPoints[1] = point; // 右上
|
||||
else if (point.X > center.X && point.Y > center.Y)
|
||||
orderedPoints[2] = point; // 右下
|
||||
else if (point.X < center.X && point.Y > center.Y)
|
||||
orderedPoints[3] = point; // 左下
|
||||
}
|
||||
|
||||
return orderedPoints;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
87
HisenceYoloDetection/Form2.Designer.cs
generated
Normal file
87
HisenceYoloDetection/Form2.Designer.cs
generated
Normal file
@ -0,0 +1,87 @@
|
||||
namespace HisenceYoloDetection
|
||||
{
|
||||
partial class Form2
|
||||
{
|
||||
/// <summary>
|
||||
/// Required designer variable.
|
||||
/// </summary>
|
||||
private System.ComponentModel.IContainer components = null;
|
||||
|
||||
/// <summary>
|
||||
/// Clean up any resources being used.
|
||||
/// </summary>
|
||||
/// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
|
||||
protected override void Dispose(bool disposing)
|
||||
{
|
||||
if (disposing && (components != null))
|
||||
{
|
||||
components.Dispose();
|
||||
}
|
||||
base.Dispose(disposing);
|
||||
}
|
||||
|
||||
#region Windows Form Designer generated code
|
||||
|
||||
/// <summary>
|
||||
/// Required method for Designer support - do not modify
|
||||
/// the contents of this method with the code editor.
|
||||
/// </summary>
|
||||
private void InitializeComponent()
|
||||
{
|
||||
button1 = new Button();
|
||||
textBox1 = new TextBox();
|
||||
label1 = new Label();
|
||||
SuspendLayout();
|
||||
//
|
||||
// button1
|
||||
//
|
||||
button1.Location = new Point(192, 58);
|
||||
button1.Margin = new Padding(2, 2, 2, 2);
|
||||
button1.Name = "button1";
|
||||
button1.Size = new Size(71, 24);
|
||||
button1.TabIndex = 0;
|
||||
button1.Text = "验证";
|
||||
button1.UseVisualStyleBackColor = true;
|
||||
//
|
||||
// textBox1
|
||||
//
|
||||
textBox1.Location = new Point(143, 24);
|
||||
textBox1.Margin = new Padding(2, 2, 2, 2);
|
||||
textBox1.Name = "textBox1";
|
||||
textBox1.Size = new Size(173, 23);
|
||||
textBox1.TabIndex = 1;
|
||||
//
|
||||
// label1
|
||||
//
|
||||
label1.AutoSize = true;
|
||||
label1.Location = new Point(58, 24);
|
||||
label1.Margin = new Padding(2, 0, 2, 0);
|
||||
label1.Name = "label1";
|
||||
label1.Size = new Size(68, 17);
|
||||
label1.TabIndex = 2;
|
||||
label1.Text = "输入密码:";
|
||||
label1.Click += label1_Click;
|
||||
//
|
||||
// Form2
|
||||
//
|
||||
AutoScaleDimensions = new SizeF(7F, 17F);
|
||||
AutoScaleMode = AutoScaleMode.Font;
|
||||
ClientSize = new Size(429, 92);
|
||||
Controls.Add(label1);
|
||||
Controls.Add(textBox1);
|
||||
Controls.Add(button1);
|
||||
Margin = new Padding(2, 2, 2, 2);
|
||||
Name = "Form2";
|
||||
Text = "验证身份";
|
||||
Load += Form2_Load;
|
||||
ResumeLayout(false);
|
||||
PerformLayout();
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
private Button button1;
|
||||
private TextBox textBox1;
|
||||
private Label label1;
|
||||
}
|
||||
}
|
39
HisenceYoloDetection/Form2.cs
Normal file
39
HisenceYoloDetection/Form2.cs
Normal file
@ -0,0 +1,39 @@
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.ComponentModel;
|
||||
using System.Data;
|
||||
using System.Drawing;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
using System.Windows.Forms;
|
||||
|
||||
namespace HisenceYoloDetection
|
||||
{
|
||||
public partial class Form2 : Form
|
||||
{
|
||||
public string EnteredPassword { get; private set; }
|
||||
public Form2()
|
||||
{
|
||||
InitializeComponent();
|
||||
button1.Click += button1_Click; // 订阅按钮点击事件
|
||||
}
|
||||
|
||||
private void button1_Click(object sender, EventArgs e)
|
||||
{
|
||||
EnteredPassword = textBox1.Text;
|
||||
DialogResult = DialogResult.OK;
|
||||
Close();
|
||||
}
|
||||
|
||||
private void Form2_Load(object sender, EventArgs e)
|
||||
{
|
||||
CenterToScreen();
|
||||
}
|
||||
|
||||
private void label1_Click(object sender, EventArgs e)
|
||||
{
|
||||
|
||||
}
|
||||
}
|
||||
}
|
120
HisenceYoloDetection/Form2.resx
Normal file
120
HisenceYoloDetection/Form2.resx
Normal file
@ -0,0 +1,120 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<root>
|
||||
<!--
|
||||
Microsoft ResX Schema
|
||||
|
||||
Version 2.0
|
||||
|
||||
The primary goals of this format is to allow a simple XML format
|
||||
that is mostly human readable. The generation and parsing of the
|
||||
various data types are done through the TypeConverter classes
|
||||
associated with the data types.
|
||||
|
||||
Example:
|
||||
|
||||
... ado.net/XML headers & schema ...
|
||||
<resheader name="resmimetype">text/microsoft-resx</resheader>
|
||||
<resheader name="version">2.0</resheader>
|
||||
<resheader name="reader">System.Resources.ResXResourceReader, System.Windows.Forms, ...</resheader>
|
||||
<resheader name="writer">System.Resources.ResXResourceWriter, System.Windows.Forms, ...</resheader>
|
||||
<data name="Name1"><value>this is my long string</value><comment>this is a comment</comment></data>
|
||||
<data name="Color1" type="System.Drawing.Color, System.Drawing">Blue</data>
|
||||
<data name="Bitmap1" mimetype="application/x-microsoft.net.object.binary.base64">
|
||||
<value>[base64 mime encoded serialized .NET Framework object]</value>
|
||||
</data>
|
||||
<data name="Icon1" type="System.Drawing.Icon, System.Drawing" mimetype="application/x-microsoft.net.object.bytearray.base64">
|
||||
<value>[base64 mime encoded string representing a byte array form of the .NET Framework object]</value>
|
||||
<comment>This is a comment</comment>
|
||||
</data>
|
||||
|
||||
There are any number of "resheader" rows that contain simple
|
||||
name/value pairs.
|
||||
|
||||
Each data row contains a name, and value. The row also contains a
|
||||
type or mimetype. Type corresponds to a .NET class that support
|
||||
text/value conversion through the TypeConverter architecture.
|
||||
Classes that don't support this are serialized and stored with the
|
||||
mimetype set.
|
||||
|
||||
The mimetype is used for serialized objects, and tells the
|
||||
ResXResourceReader how to depersist the object. This is currently not
|
||||
extensible. For a given mimetype the value must be set accordingly:
|
||||
|
||||
Note - application/x-microsoft.net.object.binary.base64 is the format
|
||||
that the ResXResourceWriter will generate, however the reader can
|
||||
read any of the formats listed below.
|
||||
|
||||
mimetype: application/x-microsoft.net.object.binary.base64
|
||||
value : The object must be serialized with
|
||||
: System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
|
||||
: and then encoded with base64 encoding.
|
||||
|
||||
mimetype: application/x-microsoft.net.object.soap.base64
|
||||
value : The object must be serialized with
|
||||
: System.Runtime.Serialization.Formatters.Soap.SoapFormatter
|
||||
: and then encoded with base64 encoding.
|
||||
|
||||
mimetype: application/x-microsoft.net.object.bytearray.base64
|
||||
value : The object must be serialized into a byte array
|
||||
: using a System.ComponentModel.TypeConverter
|
||||
: and then encoded with base64 encoding.
|
||||
-->
|
||||
<xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
|
||||
<xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
|
||||
<xsd:element name="root" msdata:IsDataSet="true">
|
||||
<xsd:complexType>
|
||||
<xsd:choice maxOccurs="unbounded">
|
||||
<xsd:element name="metadata">
|
||||
<xsd:complexType>
|
||||
<xsd:sequence>
|
||||
<xsd:element name="value" type="xsd:string" minOccurs="0" />
|
||||
</xsd:sequence>
|
||||
<xsd:attribute name="name" use="required" type="xsd:string" />
|
||||
<xsd:attribute name="type" type="xsd:string" />
|
||||
<xsd:attribute name="mimetype" type="xsd:string" />
|
||||
<xsd:attribute ref="xml:space" />
|
||||
</xsd:complexType>
|
||||
</xsd:element>
|
||||
<xsd:element name="assembly">
|
||||
<xsd:complexType>
|
||||
<xsd:attribute name="alias" type="xsd:string" />
|
||||
<xsd:attribute name="name" type="xsd:string" />
|
||||
</xsd:complexType>
|
||||
</xsd:element>
|
||||
<xsd:element name="data">
|
||||
<xsd:complexType>
|
||||
<xsd:sequence>
|
||||
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
|
||||
<xsd:element name="comment" type="xsd:string" minOccurs="0" msdata:Ordinal="2" />
|
||||
</xsd:sequence>
|
||||
<xsd:attribute name="name" type="xsd:string" use="required" msdata:Ordinal="1" />
|
||||
<xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
|
||||
<xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
|
||||
<xsd:attribute ref="xml:space" />
|
||||
</xsd:complexType>
|
||||
</xsd:element>
|
||||
<xsd:element name="resheader">
|
||||
<xsd:complexType>
|
||||
<xsd:sequence>
|
||||
<xsd:element name="value" type="xsd:string" minOccurs="0" msdata:Ordinal="1" />
|
||||
</xsd:sequence>
|
||||
<xsd:attribute name="name" type="xsd:string" use="required" />
|
||||
</xsd:complexType>
|
||||
</xsd:element>
|
||||
</xsd:choice>
|
||||
</xsd:complexType>
|
||||
</xsd:element>
|
||||
</xsd:schema>
|
||||
<resheader name="resmimetype">
|
||||
<value>text/microsoft-resx</value>
|
||||
</resheader>
|
||||
<resheader name="version">
|
||||
<value>2.0</value>
|
||||
</resheader>
|
||||
<resheader name="reader">
|
||||
<value>System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
|
||||
</resheader>
|
||||
<resheader name="writer">
|
||||
<value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
|
||||
</resheader>
|
||||
</root>
|
@ -2,16 +2,18 @@
|
||||
|
||||
<PropertyGroup>
|
||||
<OutputType>WinExe</OutputType>
|
||||
<TargetFramework>net7.0-windows</TargetFramework>
|
||||
<TargetFramework>net7.0-windows7.0</TargetFramework>
|
||||
<Nullable>enable</Nullable>
|
||||
<UseWindowsForms>true</UseWindowsForms>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<Platforms>AnyCPU;X64</Platforms>
|
||||
<AllowUnsafeBlocks>True</AllowUnsafeBlocks>
|
||||
<ApplicationIcon>bin\X64\Debug\net7.0-windows\Logo.ico</ApplicationIcon>
|
||||
<AppendTargetFrameworkToOutputPath>output</AppendTargetFrameworkToOutputPath>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<None Remove="MainForm.resx~RF4efdcc4.TMP" />
|
||||
<None Remove="ManagerModelHelper.cs~RF97ff9f.TMP" />
|
||||
<None Remove="MelsecPLCTCPDriver.cs~RFacf25a.TMP" />
|
||||
</ItemGroup>
|
||||
|
1651
HisenceYoloDetection/MainForm.Designer.cs
generated
1651
HisenceYoloDetection/MainForm.Designer.cs
generated
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -117,6 +117,9 @@
|
||||
<resheader name="writer">
|
||||
<value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
|
||||
</resheader>
|
||||
<metadata name="contextMenuStrip1.TrayLocation" type="System.Drawing.Point, System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">
|
||||
<value>569, 17</value>
|
||||
</metadata>
|
||||
<metadata name="timer1.TrayLocation" type="System.Drawing.Point, System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">
|
||||
<value>17, 17</value>
|
||||
</metadata>
|
||||
@ -135,14 +138,11 @@
|
||||
<metadata name="timer6.TrayLocation" type="System.Drawing.Point, System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">
|
||||
<value>477, 17</value>
|
||||
</metadata>
|
||||
<metadata name="contextMenuStrip1.TrayLocation" type="System.Drawing.Point, System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">
|
||||
<value>569, 17</value>
|
||||
</metadata>
|
||||
<metadata name="backgroundWorker1.TrayLocation" type="System.Drawing.Point, System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">
|
||||
<value>733, 17</value>
|
||||
</metadata>
|
||||
<metadata name="$this.TrayHeight" type="System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089">
|
||||
<value>31</value>
|
||||
<value>25</value>
|
||||
</metadata>
|
||||
<assembly alias="System.Drawing" name="System.Drawing, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
|
||||
<data name="$this.Icon" type="System.Drawing.Icon, System.Drawing" mimetype="application/x-microsoft.net.object.bytearray.base64">
|
||||
|
@ -104,83 +104,7 @@ namespace HisenceYoloDetection
|
||||
return cslist;
|
||||
|
||||
}
|
||||
public static bool IsMatchSQLText(ref Mat detMat, ref XK_HisenceWord XKSQL, ref XK_HisenceWord XKDet)
|
||||
{
|
||||
|
||||
try
|
||||
{
|
||||
string TwoRectstr = XKSQL.TwoRect;
|
||||
string oneBlockWordSql = XKSQL.OneblockMainWord;
|
||||
string twoBlockWordSql = XKSQL.TwoblockMainWord;
|
||||
string threeBlockWordSql = XKSQL.ThreeblockMainWord;
|
||||
string fourBlockWordSql = XKSQL.FourblockMainWord;
|
||||
string fiveBlockWordSql = XKSQL.FiveblockMainWord;
|
||||
string sixBlockWordSql = XKSQL.SixblockMainWord;
|
||||
string sevenBlockWordSql = XKSQL.SevenblockMainWord;
|
||||
string eightBlockWordSql = XKSQL.EightblockMainWord;
|
||||
|
||||
string oneBlockWordDet = XKDet.OneblockMainWord;
|
||||
string twoBlockWordDet = XKDet.TwoblockMainWord;
|
||||
string threeBlockWordDet = XKDet.ThreeblockMainWord;
|
||||
string fourBlockWordDet = XKDet.FourblockMainWord;
|
||||
string fiveBlockWordDet = XKDet.FiveblockMainWord;
|
||||
string sixBlockWordDet = XKDet.SixblockMainWord;
|
||||
string sevenBlockWordDet = XKDet.SevenblockMainWord;
|
||||
string eightBlockWordDet = XKDet.EightblockMainWord;
|
||||
|
||||
|
||||
|
||||
bool OneIF = isMatchStr(oneBlockWordSql, oneBlockWordDet);
|
||||
bool TwoIF = isMatchStr(twoBlockWordSql, twoBlockWordDet);
|
||||
bool ThreeIF = isMatchStr(threeBlockWordSql, threeBlockWordDet);
|
||||
bool FourIF = isMatchStr(fourBlockWordSql, fourBlockWordDet);
|
||||
bool FiveIF = isMatchStr(fiveBlockWordSql, fiveBlockWordDet);
|
||||
bool SixIF = isMatchStr(sixBlockWordSql, sixBlockWordDet);
|
||||
bool SenvenIF = isMatchStr(sevenBlockWordSql, sevenBlockWordDet);
|
||||
bool EightIF = isMatchStr(eightBlockWordSql, eightBlockWordDet);
|
||||
//第二快 卷积匹配
|
||||
string PathSql = XKSQL.TwoblockPath;
|
||||
//
|
||||
|
||||
Rect rectsql = CheckDiffSciHelper.strChangeRect(TwoRectstr);
|
||||
Rect rectDet = CheckDiffSciHelper.strChangeRect(XKDet.TwoRect);
|
||||
bool twoif2 = CheckDiffSciHelper.CheckDiffSci(PathSql, detMat, rectsql, rectDet, (bool)XKSQL.TwoIFWhile, "D://Test");
|
||||
DateTime dt = DateTime.Now;
|
||||
using (StreamWriter sw = new StreamWriter("D://Hisence//logsMatch.log", true))
|
||||
{
|
||||
string filename = dt.Year.ToString() + dt.Month.ToString() + dt.Day.ToString() + dt.Hour.ToString() + dt.Minute.ToString() + dt.Millisecond.ToString();
|
||||
sw.WriteLine(filename + "\n");
|
||||
sw.WriteLine(oneBlockWordSql + " " + oneBlockWordDet + "\n");
|
||||
sw.WriteLine(twoBlockWordSql + " " + twoBlockWordDet + "\n");
|
||||
sw.WriteLine(threeBlockWordSql + " " + threeBlockWordDet + "\n");
|
||||
sw.WriteLine(fourBlockWordSql + " " + fourBlockWordDet + "\n");
|
||||
sw.WriteLine(fiveBlockWordSql + " " + fiveBlockWordDet + "\n");
|
||||
sw.WriteLine(sixBlockWordSql + " " + sixBlockWordDet + "\n");
|
||||
sw.WriteLine(sevenBlockWordSql + " " + sevenBlockWordDet + "\n");
|
||||
sw.WriteLine(eightBlockWordSql + " " + eightBlockWordDet + "\n");
|
||||
sw.WriteLine(" 卷积匹配 " + twoif2 + "\n");
|
||||
sw.Flush();
|
||||
}
|
||||
//第三块区域一直都是false
|
||||
if (OneIF && TwoIF && ThreeIF && FourIF && FiveIF && SixIF && SenvenIF && EightIF && twoif2)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
public static bool StrMatch(string SqlText,string DetText)
|
||||
{
|
||||
// 计算Levenshtein距离
|
||||
@ -189,7 +113,7 @@ namespace HisenceYoloDetection
|
||||
// 计算相似度(相似度等于1减去标准化的Levenshtein距离)
|
||||
double similarity = 1 - ((double)distance / Math.Max(SqlText.Length, DetText.Length));
|
||||
bool areEqual = false;
|
||||
if (similarity < 0.5)
|
||||
if (similarity < 0.9)
|
||||
{
|
||||
areEqual = false;
|
||||
}
|
||||
@ -227,10 +151,13 @@ namespace HisenceYoloDetection
|
||||
}
|
||||
static bool AreMoreThanHalfEqual(string[] array1, string[] array2)
|
||||
{
|
||||
string Sqltext = array1.Join("");
|
||||
string Realtext = array2.Join("");
|
||||
int io = 0;
|
||||
foreach (string ch1 in array1)
|
||||
|
||||
foreach (char ch2 in Realtext)
|
||||
{
|
||||
foreach (string ch2 in array2)
|
||||
foreach (char ch1 in Sqltext)
|
||||
{
|
||||
if (ch1 == ch2)
|
||||
{
|
||||
@ -249,7 +176,7 @@ namespace HisenceYoloDetection
|
||||
//int intersectionCount = set1.Intersect(set2).Count();
|
||||
|
||||
// 判断交集数量是否超过一半
|
||||
return io > array1.Length / 2;
|
||||
return io >=Sqltext.Length / 2;
|
||||
}
|
||||
public static bool StrMatch2(string SqlText, string DetText)
|
||||
{
|
||||
@ -277,7 +204,7 @@ namespace HisenceYoloDetection
|
||||
Console.WriteLine("字符串中不包含数字");
|
||||
}
|
||||
bool areEqual ;
|
||||
if (numbers2.Length>2&& numbers.Length > 2)
|
||||
if (numbers2.Length>0&& numbers.Length > 0)
|
||||
{
|
||||
areEqual = AreMoreThanHalfEqual(numbers, numbers2);
|
||||
}
|
||||
|
@ -399,6 +399,7 @@ namespace XKRS.UI
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
#region 画矩形
|
||||
GPathList.ForEach(path =>
|
||||
{
|
||||
|
@ -5,8 +5,14 @@
|
||||
<Nullable>enable</Nullable>
|
||||
<UseWindowsForms>true</UseWindowsForms>
|
||||
<ImplicitUsings>enable</ImplicitUsings>
|
||||
<BaseOutputPath>.\bin\X64\Debug</BaseOutputPath>
|
||||
<!--<BaseOutputPath>.\bin\X64\Debug</BaseOutputPath>-->
|
||||
<OutputType>Library</OutputType>
|
||||
<AppendTargetFrameworkToOutputPath>output</AppendTargetFrameworkToOutputPath>
|
||||
<PlatformTarget>x64</PlatformTarget>
|
||||
</PropertyGroup>
|
||||
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'">
|
||||
<Optimize>False</Optimize>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
|
Loading…
Reference in New Issue
Block a user