using OpenCvSharp;
using OpenCvSharp.Flann;
using Sunny.UI.Win32;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
using static System.Net.Mime.MediaTypeNames;
using Point = OpenCvSharp.Point;
using Size = OpenCvSharp.Size;
using System;
using OpenCvSharp;
using OpenCvSharp.Features2D;
using OpenCvSharp.Flann;
using System.Drawing;
namespace HisenceYoloDetection
{
public static class CheckDiffSciHelper
{
public static Mat ProcessImage(Mat image, Rect fillRect)
{
// 获取图像尺寸
int width = image.Width;
int height = image.Height;
// 定义左下角 30x30 矩形框
int rectSize = 30;
int rectX = 0;
int rectY = height - rectSize; // 确保是左下角
// 检查左下角矩形框是否在图像范围内
if (rectY < 0 || rectX < 0 || rectSize > width || rectSize > height)
{
Console.WriteLine("图像尺寸不足以获取指定区域");
return image;
}
// 定义感兴趣区域 (ROI) 并计算其平均颜色
Rect roi = new Rect(rectX, rectY, rectSize, rectSize);
Mat roiMat = new Mat(image, roi);
Scalar meanColor = Cv2.Mean(roiMat);
// 创建 Scalar 类型的颜色填充
Scalar fillColor = new Scalar(meanColor.Val0, meanColor.Val1, meanColor.Val2);
// 修改 fillRect 的 Y 和 Height 属性以覆盖整个图像的高度
fillRect.Y = 0; // 起始位置为顶部
fillRect.Height = height; // 高度覆盖整个图像
// 检查填充矩形是否在图像范围内
if (fillRect.X < 0 || fillRect.X + fillRect.Width > width)
{
Console.WriteLine("填充区域超出图像范围");
return image;
}
// 使用 OpenCV 的 rectangle 函数进行填充
Cv2.Rectangle(image, fillRect.TopLeft, fillRect.BottomRight, fillColor, Cv2.FILLED);
return image;
}
///
///
///
/// 标准图像
/// 要对比的图像
/// 白板黑字为true
/// 存储路径
public static bool CheckDiffSci(string path1, Mat MatDet, ref Mat ResultMat,Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
{
// 读取和处理第一张图片。。
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
if (img1.Empty())
{
Console.WriteLine($"Error loading image {path1}");
return false;
}
// Cv2.Resize(img1, img1, new Size(550, 270));
img1 = ProcessImage(img1, sqlrect);
Mat gimg1 = new Mat();
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
Mat thr1 = new Mat();
if (IfWhiteWord)
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
// 读取和处理第二张图片
Mat img2 = MatDet.Clone();
ResultMat= MatDet.Clone();
if (img2.Empty())
{
// Console.WriteLine($"Error loading image {path2}");
return false;
}
// Cv2.Resize(img2, img2, new Size(550, 270));
img2 = ProcessImage(img2, detrect);
Rect bottomleftRect= new Rect(0,img1.Height-30,30,30);
Scalar avgColor1 = Cv2.Mean(new Mat(img1,bottomleftRect));
Mat gimg2 = new Mat();
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
Mat thr2 = new Mat();
//Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
if (IfWhiteWord)
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
//Rect area2 = new Rect(148,30,229,222);
sqlrect.Width += 20;
sqlrect.Height+= 100;
detrect.Width += 20;
detrect.Height+=100;
Mat matCutblack1 = new Mat(thr1, sqlrect);
if (IfWhiteWord)
{
matCutblack1.SetTo(Scalar.Black);
}
else
{
matCutblack1.SetTo(Scalar.Black);
}
Mat matCutblack2 = new Mat(thr2, detrect);
if (IfWhiteWord)
{
matCutblack2.SetTo(Scalar.Black);
}
else
{
matCutblack2.SetTo(Scalar.Black);
}
Cv2.Resize(thr1, thr1, new Size(550, 270));
Cv2.Resize(thr2, thr2, new Size(550, 270));
DateTime dt = DateTime.Now;
string filename = SN;
// string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
// 保存结果
//Cv2.ImWrite(savePath4, thr1);
//string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
// 保存结果
//Cv2.ImWrite(savePath3, thr2);
// 创建卷积核
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
filter1.Row(7).SetTo(new Scalar(0.025));
filter1.Col(7).SetTo(new Scalar(0.025));
// 应用卷积
Mat final_result1 = new Mat();
Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Mat final_result2 = new Mat();
Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//裁剪才行
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
////保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, final_result1);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result2.png");
////保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, final_result2);
// 计算图像差异
Mat devIMG = new Mat();
Mat devIMG_ = new Mat();
Cv2.Subtract(final_result1, final_result2, devIMG);
Cv2.Subtract(final_result2, final_result1, devIMG_);
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
//// 保存结果
//Cv2.ImWrite(savePathd, devIMG);
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
//// 保存结果
//Cv2.ImWrite(savePathd1, devIMG_);
// 对差异图像应用阈值
Cv2.Threshold(devIMG, devIMG, 20, 255, ThresholdTypes.Binary);
Cv2.Threshold(devIMG_, devIMG_, 20, 255, ThresholdTypes.Binary);
// 结合差异
Mat sumIMG = new Mat();
Cv2.Add(devIMG, devIMG_, sumIMG);
// 应用形态学操作
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
Mat blackhatImg = new Mat();
Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
// 处理轮廓和保存结果
Point[][] contours = new Point[10000][];
Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
bool isMatch = true;
foreach (var contour in contours)
{
if (Cv2.ContourArea(contour) <= 500)
{
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
// 框选轮廓
//string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, img2);
//string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
// Cv2.ImWrite(savePath, blackhatImg);
}
else
{
Rect boundingRect = Cv2.BoundingRect(contour);
Cv2.Resize(img2, img2, new Size(550, 270));
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
isMatch = false;
string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ng",filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath2, img2);
CheckDiffSciHelper1.ResizeImage(savePath2, savePath2, 640, 480, 75);
ResultMat = img2.Clone();
string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ng", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath, blackhatImg);
}
}
// 新增的白色面积占比判断
double whiteArea1 = Cv2.CountNonZero(thr1);
double whiteArea2 = Cv2.CountNonZero(thr2);
double ratio1 = whiteArea1 / (thr1.Rows * thr1.Cols);
double ratio2 = whiteArea2 / (thr2.Rows * thr2.Cols);
if (Math.Abs(ratio1 - ratio2) >= 0.90)
{
isMatch = true;
}
return isMatch;
}
public static Rect strChangeRect(string strrect)
{
if (!string.IsNullOrEmpty(strrect))
{
string[] rectstr = strrect.Split(",");
int areaX = int.Parse(rectstr[0]);
int areaY = int.Parse(rectstr[1]);
int areaWidth = int.Parse(rectstr[2]);
int areaHeight = int.Parse(rectstr[3]);
Rect rect = new Rect(areaX, areaY, areaWidth, areaHeight);
return rect;
}
else
{
return new Rect(0, 0, 0, 0);
}
}
public static string rectChangeStr(Rect area)
{
string[] rectsql = new string[4];
rectsql[0] = Convert.ToString(area.X);
rectsql[1] = Convert.ToString(area.Y);
rectsql[2] = Convert.ToString(area.Width);
rectsql[3] = Convert.ToString(area.Height);
string strrect = rectsql.Join(",");
return strrect;
}
public static class CheckDiffSciHelper1
{
///
///
///
/// 标准图像
/// 要对比的图像
/// 白板黑字为true
/// 存储路径
public static bool CheckDiffSci(string path1, Mat MatDet, Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
{
// 读取和处理第一张图片
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
if (img1.Empty())
{
Console.WriteLine($"Error loading image {path1}");
return false;
}
// Cv2.Resize(img1, img1, new Size(550, 270));
img1 = RemoveBorders(img1);
Mat gimg1 = new Mat();
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
Mat thr1 = new Mat();
if (IfWhiteWord)
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
// 读取和处理第二张图片
Mat img2 = MatDet.Clone();
if (img2.Empty())
{
// Console.WriteLine($"Error loading image {path2}");
return false;
}
// Cv2.Resize(img2, img2, new Size(550, 270));
img2 = RemoveBorders(img2);
Mat gimg2 = new Mat();
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
Mat thr2 = new Mat();
//Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
if (IfWhiteWord)
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
//Rect area2 = new Rect(148,30,229,222);
sqlrect.Width += 20;
sqlrect.Height += 20;
detrect.Width += 20;
detrect.Height += 20;
Mat matCutblack1 = new Mat(thr1, sqlrect);
if (IfWhiteWord)
{
matCutblack1.SetTo(Scalar.Black);
}
else
{
matCutblack1.SetTo(Scalar.Black);
}
Mat matCutblack2 = new Mat(thr2, detrect);
if (IfWhiteWord)
{
matCutblack2.SetTo(Scalar.Black);
}
else
{
matCutblack2.SetTo(Scalar.Black);
}
Cv2.Resize(thr1, thr1, new Size(845, 498));
Cv2.Resize(thr2, thr2, new Size(845, 498));
DateTime dt = DateTime.Now;
string filename = SN;
//string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
// 保存结果
//Cv2.ImWrite(savePath4, thr1);
// string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
// 保存结果
// Cv2.ImWrite(savePath3, thr2);
// 创建卷积核
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
filter1.Row(7).SetTo(new Scalar(0.025));
filter1.Col(7).SetTo(new Scalar(0.025));
// 应用卷积
Mat final_result1 = new Mat();
Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//Cv2.Filter2D(final_result1, final_result1, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Mat final_result2 = new Mat();
Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//Cv2.Filter2D(final_result2, final_result2, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//裁剪才行
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
//// 保存结果
////string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, final_result1);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result2.png");
//// 保存结果
////string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, final_result2);
// 计算图像差异
Mat devIMG = new Mat();
Mat devIMG_ = new Mat();
Cv2.Subtract(final_result1, final_result2, devIMG);
Cv2.Subtract(final_result2, final_result1, devIMG_);
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
// 保存结果
// Cv2.ImWrite(savePathd, devIMG);
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
// 保存结果
//Cv2.ImWrite(savePathd1, devIMG_);
// 对差异图像应用阈值
Cv2.Threshold(devIMG, devIMG, 8, 255, ThresholdTypes.Binary);
Cv2.Threshold(devIMG_, devIMG_, 8, 255, ThresholdTypes.Binary);
// 结合差异
Mat sumIMG = new Mat();
Cv2.Add(devIMG, devIMG_, sumIMG);
//string savePaths = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "sumIMG.png");
// 保存结果
//Cv2.ImWrite(savePaths, sumIMG);
// 应用形态学操作
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
Mat blackhatImg = new Mat();
Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
// 处理轮廓和保存结果
Point[][] contours = new Point[10000][];
Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
bool isMatch = true;
foreach (var contour in contours)
{
if (Cv2.ContourArea(contour) <= 500)
{
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
// 框选轮廓
}
else
{
Rect boundingRect = Cv2.BoundingRect(contour);
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
isMatch = false;
}
}
string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath2, img2);
//ResizeImage(savePath2, savePath2, 640, 480, 75);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, blackhatImg);
return isMatch;
}
public static void ResizeImage(string inputPath, string outputPath, int newWidth, int newHeight, int quality)
{
// 加载原始图像
using (Mat originalImage = Cv2.ImRead(inputPath))
{
// 创建一个Mat对象用于存储缩放后的图像
using (Mat resizedImage = new Mat())
{
// 缩放图像
Cv2.Resize(originalImage, resizedImage, new OpenCvSharp.Size(newWidth, newHeight));
// 保存图像为JPEG格式,并设置压缩质量
SaveJpeg(outputPath, resizedImage, quality);
Console.WriteLine($"Image saved to {outputPath}");
}
}
}
static void SaveJpeg(string path, Mat image, int quality)
{
// 设置JPEG编码参数
var encodeParams = new[] { new ImageEncodingParam(ImwriteFlags.JpegQuality, quality) };
// 保存图像
Cv2.ImWrite(path, image, encodeParams);
}
static Mat RemoveBorders(Mat image)
{
// 将图像转换为灰度图
Mat grayImage = new Mat();
Cv2.CvtColor(image, grayImage, ColorConversionCodes.BGR2GRAY);
// 使用自适应二值化将图像变为黑白图
Mat binaryImage = new Mat();
Cv2.AdaptiveThreshold(grayImage, binaryImage, 255, AdaptiveThresholdTypes.MeanC, ThresholdTypes.Binary, 11, 2);
// 反转颜色
Mat invertedBinaryImage = new Mat();
Cv2.BitwiseNot(binaryImage, invertedBinaryImage);
// 查找轮廓
Point[][] contours;
HierarchyIndex[] hierarchy;
Cv2.FindContours(invertedBinaryImage, out contours, out hierarchy, RetrievalModes.External, ContourApproximationModes.ApproxSimple);
// 找到包含最大面积的轮廓
double maxArea = 0;
Point[] maxContour = null;
foreach (var contour in contours)
{
double area = Cv2.ContourArea(contour);
if (area > maxArea)
{
maxArea = area;
maxContour = contour;
}
}
if (maxContour == null)
{
Console.WriteLine("未找到有效轮廓!");
return image;
}
// 找到平行四边形的四个顶点
Point[] approx = Cv2.ApproxPolyDP(maxContour, Cv2.ArcLength(maxContour, true) * 0.02, true);
Point2f[] srcPoints = approx.Select(p => new Point2f(p.X, p.Y)).ToArray();
if (srcPoints.Length != 4)
{
Console.WriteLine("未找到平行四边形的四个顶点!");
return image;
}
// 按顺时针顺序对顶点进行排序
srcPoints = OrderPoints(srcPoints);
// 确定目标图像的四个顶点
Point2f[] dstPoints = new Point2f[]
{
new Point2f(0, 0),
new Point2f(image.Width - 1, 0),
new Point2f(image.Width - 1, image.Height - 1),
new Point2f(0, image.Height - 1)
};
// 计算透视变换矩阵
Mat transformMatrix = Cv2.GetPerspectiveTransform(srcPoints, dstPoints);
// 应用透视变换
Mat warpedImage = new Mat();
Cv2.WarpPerspective(image, warpedImage, transformMatrix, new Size(image.Width, image.Height));
return warpedImage;
}
private static Point2f[] OrderPoints(Point2f[] points)
{
// 对顶点进行排序,顺时针顺序
Point2f[] orderedPoints = new Point2f[4];
// 计算质心
Point2f center = new Point2f(points.Average(p => p.X), points.Average(p => p.Y));
foreach (var point in points)
{
if (point.X < center.X && point.Y < center.Y)
orderedPoints[0] = point; // 左上
else if (point.X > center.X && point.Y < center.Y)
orderedPoints[1] = point; // 右上
else if (point.X > center.X && point.Y > center.Y)
orderedPoints[2] = point; // 右下
else if (point.X < center.X && point.Y > center.Y)
orderedPoints[3] = point; // 左下
}
return orderedPoints;
}
}
}
}