hisence-yolo-detection/HisenceYoloDetection/CheckDiffSciHelper.cs
2024-08-26 18:07:19 +08:00

631 lines
26 KiB
C#
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using OpenCvSharp;
using OpenCvSharp.Flann;
using Sunny.UI.Win32;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
using static System.Net.Mime.MediaTypeNames;
using Point = OpenCvSharp.Point;
using Size = OpenCvSharp.Size;
using System;
using OpenCvSharp;
using OpenCvSharp.Features2D;
using OpenCvSharp.Flann;
using System.Drawing;
namespace HisenceYoloDetection
{
public static class CheckDiffSciHelper
{
public static Mat ProcessImage(Mat image, Rect fillRect)
{
// 获取图像尺寸
int width = image.Width;
int height = image.Height;
// 定义左下角 30x30 矩形框
int rectSize = 30;
int rectX = 0;
int rectY = height - rectSize; // 确保是左下角
// 检查左下角矩形框是否在图像范围内
if (rectY < 0 || rectX < 0 || rectSize > width || rectSize > height)
{
Console.WriteLine("图像尺寸不足以获取指定区域");
return image;
}
// 定义感兴趣区域 (ROI) 并计算其平均颜色
Rect roi = new Rect(rectX, rectY, rectSize, rectSize);
Mat roiMat = new Mat(image, roi);
Scalar meanColor = Cv2.Mean(roiMat);
// 创建 Scalar 类型的颜色填充
Scalar fillColor = new Scalar(meanColor.Val0, meanColor.Val1, meanColor.Val2);
// 修改 fillRect 的 Y 和 Height 属性以覆盖整个图像的高度
fillRect.Y = 0; // 起始位置为顶部
fillRect.Height = height; // 高度覆盖整个图像
// 检查填充矩形是否在图像范围内
if (fillRect.X < 0 || fillRect.X + fillRect.Width > width)
{
Console.WriteLine("填充区域超出图像范围");
return image;
}
// 使用 OpenCV 的 rectangle 函数进行填充
Cv2.Rectangle(image, fillRect.TopLeft, fillRect.BottomRight, fillColor, Cv2.FILLED);
return image;
}
/// <summary>
///
/// </summary>
/// <param name="path1">标准图像</param>
/// <param name="path2">要对比的图像</param>
/// <param name="IfWhiteWord"> 白板黑字为true </param>
/// <param name="saveDir">存储路径</param>
public static bool CheckDiffSci(string path1, Mat MatDet, ref Mat ResultMat,Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
{
// 读取和处理第一张图片。。
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
if (img1.Empty())
{
Console.WriteLine($"Error loading image {path1}");
return false;
}
// Cv2.Resize(img1, img1, new Size(550, 270));
img1 = ProcessImage(img1, sqlrect);
Mat gimg1 = new Mat();
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
Mat thr1 = new Mat();
if (IfWhiteWord)
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
// 读取和处理第二张图片
Mat img2 = MatDet.Clone();
ResultMat= MatDet.Clone();
if (img2.Empty())
{
// Console.WriteLine($"Error loading image {path2}");
return false;
}
// Cv2.Resize(img2, img2, new Size(550, 270));
img2 = ProcessImage(img2, detrect);
Rect bottomleftRect= new Rect(0,img1.Height-30,30,30);
Scalar avgColor1 = Cv2.Mean(new Mat(img1,bottomleftRect));
Mat gimg2 = new Mat();
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
Mat thr2 = new Mat();
//Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
if (IfWhiteWord)
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
//Rect area2 = new Rect(148,30,229,222);
sqlrect.Width += 20;
sqlrect.Height+= 100;
detrect.Width += 20;
detrect.Height+=100;
Mat matCutblack1 = new Mat(thr1, sqlrect);
if (IfWhiteWord)
{
matCutblack1.SetTo(Scalar.Black);
}
else
{
matCutblack1.SetTo(Scalar.Black);
}
Mat matCutblack2 = new Mat(thr2, detrect);
if (IfWhiteWord)
{
matCutblack2.SetTo(Scalar.Black);
}
else
{
matCutblack2.SetTo(Scalar.Black);
}
Cv2.Resize(thr1, thr1, new Size(550, 270));
Cv2.Resize(thr2, thr2, new Size(550, 270));
DateTime dt = DateTime.Now;
string filename = SN;
// string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
// 保存结果
//Cv2.ImWrite(savePath4, thr1);
//string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
// 保存结果
//Cv2.ImWrite(savePath3, thr2);
// 创建卷积核
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
filter1.Row(7).SetTo(new Scalar(0.025));
filter1.Col(7).SetTo(new Scalar(0.025));
// 应用卷积
Mat final_result1 = new Mat();
Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Mat final_result2 = new Mat();
Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//裁剪才行
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
////保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, final_result1);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result2.png");
////保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, final_result2);
// 计算图像差异
Mat devIMG = new Mat();
Mat devIMG_ = new Mat();
Cv2.Subtract(final_result1, final_result2, devIMG);
Cv2.Subtract(final_result2, final_result1, devIMG_);
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
//// 保存结果
//Cv2.ImWrite(savePathd, devIMG);
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
//// 保存结果
//Cv2.ImWrite(savePathd1, devIMG_);
// 对差异图像应用阈值
Cv2.Threshold(devIMG, devIMG, 20, 255, ThresholdTypes.Binary);
Cv2.Threshold(devIMG_, devIMG_, 20, 255, ThresholdTypes.Binary);
// 结合差异
Mat sumIMG = new Mat();
Cv2.Add(devIMG, devIMG_, sumIMG);
// 应用形态学操作
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
Mat blackhatImg = new Mat();
Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
// 处理轮廓和保存结果
Point[][] contours = new Point[10000][];
Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
bool isMatch = true;
foreach (var contour in contours)
{
if (Cv2.ContourArea(contour) <= 500)
{
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
// 框选轮廓
//string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, img2);
//string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ok", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
// Cv2.ImWrite(savePath, blackhatImg);
}
else
{
Rect boundingRect = Cv2.BoundingRect(contour);
Cv2.Resize(img2, img2, new Size(550, 270));
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
isMatch = false;
string savePath2 = Path.Combine("D:\\Hisence\\Test\\2\\ng",filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath2, img2);
CheckDiffSciHelper1.ResizeImage(savePath2, savePath2, 640, 480, 75);
ResultMat = img2.Clone();
string savePath = Path.Combine("D:\\Hisence\\Test\\2\\ng", Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath, blackhatImg);
}
}
// 新增的白色面积占比判断
double whiteArea1 = Cv2.CountNonZero(thr1);
double whiteArea2 = Cv2.CountNonZero(thr2);
double ratio1 = whiteArea1 / (thr1.Rows * thr1.Cols);
double ratio2 = whiteArea2 / (thr2.Rows * thr2.Cols);
if (Math.Abs(ratio1 - ratio2) >= 0.90)
{
isMatch = true;
}
return isMatch;
}
public static Rect strChangeRect(string strrect)
{
if (!string.IsNullOrEmpty(strrect))
{
string[] rectstr = strrect.Split(",");
int areaX = int.Parse(rectstr[0]);
int areaY = int.Parse(rectstr[1]);
int areaWidth = int.Parse(rectstr[2]);
int areaHeight = int.Parse(rectstr[3]);
Rect rect = new Rect(areaX, areaY, areaWidth, areaHeight);
return rect;
}
else
{
return new Rect(0, 0, 0, 0);
}
}
public static string rectChangeStr(Rect area)
{
string[] rectsql = new string[4];
rectsql[0] = Convert.ToString(area.X);
rectsql[1] = Convert.ToString(area.Y);
rectsql[2] = Convert.ToString(area.Width);
rectsql[3] = Convert.ToString(area.Height);
string strrect = rectsql.Join(",");
return strrect;
}
public static class CheckDiffSciHelper1
{
/// <summary>
///
/// </summary>
/// <param name="path1">标准图像</param>
/// <param name="path2">要对比的图像</param>
/// <param name="IfWhiteWord"> 白板黑字为true </param>
/// <param name="saveDir">存储路径</param>
public static bool CheckDiffSci(string path1, Mat MatDet, Rect sqlrect, Rect detrect, bool IfWhiteWord, string saveDir,string SN)
{
// 读取和处理第一张图片
Mat img1 = Cv2.ImRead(path1, ImreadModes.Color);
if (img1.Empty())
{
Console.WriteLine($"Error loading image {path1}");
return false;
}
// Cv2.Resize(img1, img1, new Size(550, 270));
img1 = RemoveBorders(img1);
Mat gimg1 = new Mat();
Cv2.CvtColor(img1, gimg1, ColorConversionCodes.BGR2GRAY);
Mat thr1 = new Mat();
if (IfWhiteWord)
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg1, thr1, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
// 读取和处理第二张图片
Mat img2 = MatDet.Clone();
if (img2.Empty())
{
// Console.WriteLine($"Error loading image {path2}");
return false;
}
// Cv2.Resize(img2, img2, new Size(550, 270));
img2 = RemoveBorders(img2);
Mat gimg2 = new Mat();
Cv2.CvtColor(img2, gimg2, ColorConversionCodes.BGR2GRAY);
Mat thr2 = new Mat();
//Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
if (IfWhiteWord)
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu);
}
else
{
Cv2.Threshold(gimg2, thr2, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
}
//Rect area2 = new Rect(148,30,229,222);
sqlrect.Width += 20;
sqlrect.Height += 20;
detrect.Width += 20;
detrect.Height += 20;
Mat matCutblack1 = new Mat(thr1, sqlrect);
if (IfWhiteWord)
{
matCutblack1.SetTo(Scalar.Black);
}
else
{
matCutblack1.SetTo(Scalar.Black);
}
Mat matCutblack2 = new Mat(thr2, detrect);
if (IfWhiteWord)
{
matCutblack2.SetTo(Scalar.Black);
}
else
{
matCutblack2.SetTo(Scalar.Black);
}
Cv2.Resize(thr1, thr1, new Size(845, 498));
Cv2.Resize(thr2, thr2, new Size(845, 498));
DateTime dt = DateTime.Now;
string filename = SN;
//string savePath4 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr1.png");
// 保存结果
//Cv2.ImWrite(savePath4, thr1);
// string savePath3 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_thr2.png");
// 保存结果
// Cv2.ImWrite(savePath3, thr2);
// 创建卷积核
Mat filter1 = new Mat(15, 15, MatType.CV_32F, new Scalar(0));
filter1.Row(7).SetTo(new Scalar(0.025));
filter1.Col(7).SetTo(new Scalar(0.025));
// 应用卷积
Mat final_result1 = new Mat();
Cv2.Filter2D(thr1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result1, final_result1, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//Cv2.Filter2D(final_result1, final_result1, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Mat final_result2 = new Mat();
Cv2.Filter2D(thr2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
Cv2.Filter2D(final_result2, final_result2, -1, filter1, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//Cv2.Filter2D(final_result2, final_result2, -1, filter2, anchor: new Point(-1, -1), 0, BorderTypes.Reflect);
//裁剪才行
//string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result1.png");
//// 保存结果
////string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath2, final_result1);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + "_final_result2.png");
//// 保存结果
////string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, final_result2);
// 计算图像差异
Mat devIMG = new Mat();
Mat devIMG_ = new Mat();
Cv2.Subtract(final_result1, final_result2, devIMG);
Cv2.Subtract(final_result2, final_result1, devIMG_);
//string savePathd = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG.png");
// 保存结果
// Cv2.ImWrite(savePathd, devIMG);
//string savePathd1 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "devIMG_.png");
// 保存结果
//Cv2.ImWrite(savePathd1, devIMG_);
// 对差异图像应用阈值
Cv2.Threshold(devIMG, devIMG, 8, 255, ThresholdTypes.Binary);
Cv2.Threshold(devIMG_, devIMG_, 8, 255, ThresholdTypes.Binary);
// 结合差异
Mat sumIMG = new Mat();
Cv2.Add(devIMG, devIMG_, sumIMG);
//string savePaths = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "sumIMG.png");
// 保存结果
//Cv2.ImWrite(savePaths, sumIMG);
// 应用形态学操作
Mat kernelCL = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(3, 3));
Mat blackhatImg = new Mat();
Cv2.Dilate(sumIMG, blackhatImg, kernelCL);
// 处理轮廓和保存结果
Point[][] contours = new Point[10000][];
Cv2.FindContours(blackhatImg, out contours, out _, RetrievalModes.Tree, ContourApproximationModes.ApproxSimple);
bool isMatch = true;
foreach (var contour in contours)
{
if (Cv2.ContourArea(contour) <= 500)
{
Cv2.DrawContours(blackhatImg, new Point[][] { contour }, -1, Scalar.Black, thickness: Cv2.FILLED);
// 框选轮廓
}
else
{
Rect boundingRect = Cv2.BoundingRect(contour);
Cv2.Rectangle(img2, boundingRect, Scalar.Red, thickness: 2);
isMatch = false;
}
}
string savePath2 = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_Rect.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
Cv2.ImWrite(savePath2, img2);
//ResizeImage(savePath2, savePath2, 640, 480, 75);
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path1) + filename + "_diff.png");
// 保存结果
//string savePath = Path.Combine(saveDir, Path.GetFileNameWithoutExtension(path2) + "_diff.png");
//Cv2.ImWrite(savePath, blackhatImg);
return isMatch;
}
public static void ResizeImage(string inputPath, string outputPath, int newWidth, int newHeight, int quality)
{
// 加载原始图像
using (Mat originalImage = Cv2.ImRead(inputPath))
{
// 创建一个Mat对象用于存储缩放后的图像
using (Mat resizedImage = new Mat())
{
// 缩放图像
Cv2.Resize(originalImage, resizedImage, new OpenCvSharp.Size(newWidth, newHeight));
// 保存图像为JPEG格式并设置压缩质量
SaveJpeg(outputPath, resizedImage, quality);
Console.WriteLine($"Image saved to {outputPath}");
}
}
}
static void SaveJpeg(string path, Mat image, int quality)
{
// 设置JPEG编码参数
var encodeParams = new[] { new ImageEncodingParam(ImwriteFlags.JpegQuality, quality) };
// 保存图像
Cv2.ImWrite(path, image, encodeParams);
}
static Mat RemoveBorders(Mat image)
{
// 将图像转换为灰度图
Mat grayImage = new Mat();
Cv2.CvtColor(image, grayImage, ColorConversionCodes.BGR2GRAY);
// 使用自适应二值化将图像变为黑白图
Mat binaryImage = new Mat();
Cv2.AdaptiveThreshold(grayImage, binaryImage, 255, AdaptiveThresholdTypes.MeanC, ThresholdTypes.Binary, 11, 2);
// 反转颜色
Mat invertedBinaryImage = new Mat();
Cv2.BitwiseNot(binaryImage, invertedBinaryImage);
// 查找轮廓
Point[][] contours;
HierarchyIndex[] hierarchy;
Cv2.FindContours(invertedBinaryImage, out contours, out hierarchy, RetrievalModes.External, ContourApproximationModes.ApproxSimple);
// 找到包含最大面积的轮廓
double maxArea = 0;
Point[] maxContour = null;
foreach (var contour in contours)
{
double area = Cv2.ContourArea(contour);
if (area > maxArea)
{
maxArea = area;
maxContour = contour;
}
}
if (maxContour == null)
{
Console.WriteLine("未找到有效轮廓!");
return image;
}
// 找到平行四边形的四个顶点
Point[] approx = Cv2.ApproxPolyDP(maxContour, Cv2.ArcLength(maxContour, true) * 0.02, true);
Point2f[] srcPoints = approx.Select(p => new Point2f(p.X, p.Y)).ToArray();
if (srcPoints.Length != 4)
{
Console.WriteLine("未找到平行四边形的四个顶点!");
return image;
}
// 按顺时针顺序对顶点进行排序
srcPoints = OrderPoints(srcPoints);
// 确定目标图像的四个顶点
Point2f[] dstPoints = new Point2f[]
{
new Point2f(0, 0),
new Point2f(image.Width - 1, 0),
new Point2f(image.Width - 1, image.Height - 1),
new Point2f(0, image.Height - 1)
};
// 计算透视变换矩阵
Mat transformMatrix = Cv2.GetPerspectiveTransform(srcPoints, dstPoints);
// 应用透视变换
Mat warpedImage = new Mat();
Cv2.WarpPerspective(image, warpedImage, transformMatrix, new Size(image.Width, image.Height));
return warpedImage;
}
private static Point2f[] OrderPoints(Point2f[] points)
{
// 对顶点进行排序,顺时针顺序
Point2f[] orderedPoints = new Point2f[4];
// 计算质心
Point2f center = new Point2f(points.Average(p => p.X), points.Average(p => p.Y));
foreach (var point in points)
{
if (point.X < center.X && point.Y < center.Y)
orderedPoints[0] = point; // 左上
else if (point.X > center.X && point.Y < center.Y)
orderedPoints[1] = point; // 右上
else if (point.X > center.X && point.Y > center.Y)
orderedPoints[2] = point; // 右下
else if (point.X < center.X && point.Y > center.Y)
orderedPoints[3] = point; // 左下
}
return orderedPoints;
}
}
}
}