265 lines
8.1 KiB
C#
265 lines
8.1 KiB
C#
|
//#define USE_MULTI_THREAD
|
|||
|
|
|||
|
using OpenCvSharp;
|
|||
|
using OpenCvSharp.Extensions;
|
|||
|
using System;
|
|||
|
using System.Collections.Generic;
|
|||
|
using System.Diagnostics;
|
|||
|
using System.Drawing;
|
|||
|
using System.Linq;
|
|||
|
using System.Runtime.ExceptionServices;
|
|||
|
using System.Threading;
|
|||
|
using System.Threading.Tasks;
|
|||
|
using System.Runtime.InteropServices;
|
|||
|
using Newtonsoft.Json;
|
|||
|
|
|||
|
|
|||
|
namespace DH.Devices.Vision
|
|||
|
{
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// 实例分割 maskrcnn
|
|||
|
/// </summary>
|
|||
|
public class SimboInstanceSegmentation : SimboVisionMLBase
|
|||
|
{
|
|||
|
public override bool Load(MLInit mLInit)
|
|||
|
{
|
|||
|
bool res = false;
|
|||
|
try
|
|||
|
{
|
|||
|
|
|||
|
|
|||
|
Model = MLEngine.InitModel(mLInit.ModelFile,
|
|||
|
mLInit.InferenceDevice,
|
|||
|
mLInit.InputNodeName,
|
|||
|
1, 3,
|
|||
|
mLInit.InferenceWidth,
|
|||
|
mLInit.InferenceHeight,5);
|
|||
|
res = true;
|
|||
|
|
|||
|
#if USE_MULTI_THREAD
|
|||
|
|
|||
|
IsCreated = true;
|
|||
|
if (IsCreated)
|
|||
|
{
|
|||
|
if (_runHandleBefore == null)
|
|||
|
{
|
|||
|
_runHandleBefore = new AutoResetEvent(false);
|
|||
|
}
|
|||
|
|
|||
|
if (_runHandleAfter == null)
|
|||
|
{
|
|||
|
_runHandleAfter = new ManualResetEvent(false);
|
|||
|
}
|
|||
|
|
|||
|
if (_runTask == null)
|
|||
|
{
|
|||
|
_runTask = Task.Factory.StartNew(() =>
|
|||
|
{
|
|||
|
while (IsCreated)
|
|||
|
{
|
|||
|
_runHandleBefore.WaitOne();
|
|||
|
|
|||
|
if (IsCreated)
|
|||
|
{
|
|||
|
_result = RunInferenceFixed(_req);
|
|||
|
_runHandleAfter.Set();
|
|||
|
}
|
|||
|
}
|
|||
|
}, TaskCreationOptions.LongRunning);
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
}
|
|||
|
catch (Exception ex)
|
|||
|
{
|
|||
|
throw ex;
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#if USE_MULTI_THREAD
|
|||
|
MLRequest _req = null;
|
|||
|
MLResult _result = null;
|
|||
|
|
|||
|
|
|||
|
public bool IsCreated { get; set; } = false;
|
|||
|
Task _runTask = null;
|
|||
|
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
|
|||
|
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
|
|||
|
object _runLock = new object();
|
|||
|
#endif
|
|||
|
|
|||
|
[HandleProcessCorruptedStateExceptions]
|
|||
|
public override MLResult RunInference(MLRequest req)
|
|||
|
{
|
|||
|
#if USE_MULTI_THREAD
|
|||
|
MLResult mlResult = null;
|
|||
|
lock (_runLock)
|
|||
|
{
|
|||
|
_result = new MLResult();
|
|||
|
|
|||
|
_req = req;
|
|||
|
|
|||
|
_runHandleAfter.Reset();
|
|||
|
_runHandleBefore.Set();
|
|||
|
_runHandleAfter.WaitOne();
|
|||
|
|
|||
|
mlResult = _result;
|
|||
|
}
|
|||
|
|
|||
|
return mlResult;
|
|||
|
#else
|
|||
|
return RunInferenceFixed(req);
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
private void ConvertJsonResult(string json, ref MLResult result)
|
|||
|
{
|
|||
|
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
|
|||
|
//
|
|||
|
Console.WriteLine("检测结果JSON:" + json);
|
|||
|
SegResult detResult = JsonConvert.DeserializeObject<SegResult>(json);
|
|||
|
if (detResult == null)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
int iNum = detResult.SegmentResult.Count;
|
|||
|
int IokNum = 0;
|
|||
|
for (int ix = 0; ix < iNum; ix++)
|
|||
|
{
|
|||
|
var det = detResult.SegmentResult[ix];
|
|||
|
|
|||
|
var rect = det.rect;
|
|||
|
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
|
|||
|
detectionResultDetail.LabelNo = det.classId;
|
|||
|
//todo: 标签名相对应
|
|||
|
detectionResultDetail.LabelDisplay = det.classname;
|
|||
|
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
|
|||
|
detectionResultDetail.Score = det.fScore;
|
|||
|
detectionResultDetail.LabelName = det.classname;
|
|||
|
detectionResultDetail.Area = det.area;
|
|||
|
detectionResultDetail.InferenceResult = ResultState.DetectNG;
|
|||
|
|
|||
|
result.ResultDetails.Add(detectionResultDetail);
|
|||
|
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
[HandleProcessCorruptedStateExceptions]
|
|||
|
public MLResult RunInferenceFixed(MLRequest req)
|
|||
|
{
|
|||
|
MLResult mlResult = new MLResult();
|
|||
|
Mat originMat = new Mat();
|
|||
|
Mat detectMat = new Mat();
|
|||
|
|
|||
|
try
|
|||
|
{
|
|||
|
if (req.mImage == null)
|
|||
|
{
|
|||
|
mlResult.IsSuccess = false;
|
|||
|
mlResult.ResultMessage = "异常:mat为null,无法执行推理!";
|
|||
|
return mlResult;
|
|||
|
}
|
|||
|
|
|||
|
// resize
|
|||
|
detectMat = req.mImage;//1ms
|
|||
|
|
|||
|
|
|||
|
|
|||
|
int iWidth = detectMat.Cols;
|
|||
|
int iHeight = detectMat.Rows;
|
|||
|
|
|||
|
// 如果是单通道图像,转换为三通道 RGB 格式
|
|||
|
if (detectMat.Channels() == 1)
|
|||
|
{
|
|||
|
// 将灰度图像转换为RGB格式(三通道)
|
|||
|
|
|||
|
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR);
|
|||
|
|
|||
|
}
|
|||
|
else if (detectMat.Channels() == 3)
|
|||
|
{
|
|||
|
// 如果已经是三通道(BGR),则直接转换为RGB
|
|||
|
|
|||
|
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
//输入数据转化为字节
|
|||
|
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数,不然数组越界,也可以用w*h*c,差不多
|
|||
|
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
|
|||
|
|
|||
|
byte[] labellist = new byte[40960]; //新建字节数组:label1_str label2_str
|
|||
|
|
|||
|
byte[] outputByte = new byte[originMat.Total() * 3];
|
|||
|
|
|||
|
Stopwatch sw = new Stopwatch();
|
|||
|
sw.Start();
|
|||
|
unsafe
|
|||
|
{
|
|||
|
|
|||
|
mlResult.IsSuccess = MLEngine.seg_ModelPredict(Model, inputByte, iWidth, iHeight, 3,
|
|||
|
req.in_lable_path, req.confThreshold, req.iouThreshold, req.confThreshold, req.segmentWidth, ref outputByte[0], ref labellist[0]);
|
|||
|
//mlResult.IsSuccess = true;
|
|||
|
}
|
|||
|
sw.Stop();
|
|||
|
|
|||
|
if (mlResult.IsSuccess)
|
|||
|
{
|
|||
|
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
|
|||
|
|
|||
|
//将字节数组转换为字符串
|
|||
|
mlResult.ResultMap = originMat.ToBitmap();//4ms
|
|||
|
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
|
|||
|
|
|||
|
|
|||
|
Console.WriteLine("strGet:", strGet);
|
|||
|
|
|||
|
|
|||
|
ConvertJsonResult(strGet, ref mlResult);
|
|||
|
|
|||
|
|
|||
|
|
|||
|
//解析json字符串
|
|||
|
|
|||
|
return mlResult;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
|
|||
|
return mlResult;
|
|||
|
}
|
|||
|
}
|
|||
|
catch (Exception ex)
|
|||
|
{
|
|||
|
mlResult.ResultMessage = $"深度学习执行推理异常";
|
|||
|
return mlResult;
|
|||
|
}
|
|||
|
finally
|
|||
|
{
|
|||
|
|
|||
|
originMat?.Dispose();
|
|||
|
originMat = null;
|
|||
|
|
|||
|
|
|||
|
// GC.Collect();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
}
|