2025-03-21 08:51:20 +08:00
|
|
|
|
using DH.Commons.Base;
|
|
|
|
|
using DH.Commons.Enums;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
using DH.UI.Model.Winform;
|
|
|
|
|
using HalconDotNet;
|
|
|
|
|
using OpenCvSharp;
|
|
|
|
|
using OpenCvSharp.Extensions;
|
2025-03-07 16:29:38 +08:00
|
|
|
|
using System;
|
|
|
|
|
using System.Collections.Generic;
|
|
|
|
|
using System.Diagnostics;
|
|
|
|
|
using System.Linq;
|
|
|
|
|
using System.Runtime.ExceptionServices;
|
|
|
|
|
using System.Text;
|
|
|
|
|
using System.Threading.Tasks;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
using System.Windows.Forms;
|
2025-03-07 16:29:38 +08:00
|
|
|
|
using System.Xml.Linq;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
using XKRS.UI.Model.Winform;
|
|
|
|
|
using static DH.Commons.Enums.EnumHelper;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
using ResultState = DH.Commons.Base.ResultState;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
2025-03-07 16:29:38 +08:00
|
|
|
|
|
|
|
|
|
namespace DH.Devices.Vision
|
|
|
|
|
{
|
2025-03-16 13:11:08 +08:00
|
|
|
|
public class SimboVisionDriver : VisionEngineBase
|
2025-03-07 16:29:38 +08:00
|
|
|
|
{
|
2025-03-16 13:11:08 +08:00
|
|
|
|
public Dictionary<string, HDevEngineTool> HalconToolDict = new Dictionary<string, HDevEngineTool>();
|
|
|
|
|
|
|
|
|
|
public List<SimboStationMLEngineSet> SimboStationMLEngineList = new List<SimboStationMLEngineSet>();
|
|
|
|
|
|
|
|
|
|
public void Init()
|
|
|
|
|
{
|
|
|
|
|
//InitialQueue();
|
|
|
|
|
InitialHalconTools();
|
|
|
|
|
InitialSimboMLEnginesAsync();
|
|
|
|
|
|
|
|
|
|
// ImageSaveHelper.OnImageSaveExceptionRaised -= ImageSaveHelper_OnImageSaveExceptionRaised;
|
|
|
|
|
// ImageSaveHelper.OnImageSaveExceptionRaised += ImageSaveHelper_OnImageSaveExceptionRaised;
|
|
|
|
|
// base.Init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//private void ImageSaveHelper_OnImageSaveExceptionRaised(DateTime dt, string msg)
|
|
|
|
|
//{
|
|
|
|
|
// LogAsync(new LogMsg(dt, LogLevel.Error, msg));
|
|
|
|
|
//}
|
|
|
|
|
public override DetectStationResult RunInference(Mat originImgSet, string detectionId = null)
|
|
|
|
|
{
|
|
|
|
|
DetectStationResult detectResult = new DetectStationResult();
|
|
|
|
|
DetectionConfig detectConfig = null;
|
|
|
|
|
//找到对应的配置
|
|
|
|
|
if (!string.IsNullOrWhiteSpace(detectionId))
|
|
|
|
|
{
|
|
|
|
|
detectConfig = DetectionConfigs.FirstOrDefault(u => u.Id == detectionId);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
//detectConfig = DetectionConfigs.FirstOrDefault(u => u.CameraSourceId == camera.CameraName);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (detectConfig == null)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
//未能获得检测配置
|
|
|
|
|
return detectResult;
|
|
|
|
|
}
|
|
|
|
|
#region 1.预处理
|
|
|
|
|
|
|
|
|
|
using (Mat PreTMat = originImgSet.Clone())
|
|
|
|
|
{
|
|
|
|
|
PreTreated(detectConfig, detectResult, PreTMat);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endregion
|
|
|
|
|
if (detectResult.IsPreTreatNG)
|
|
|
|
|
{
|
|
|
|
|
detectResult.ResultState = ResultState.DetectNG;
|
|
|
|
|
detectResult.IsPreTreatDone = true;
|
|
|
|
|
detectResult.IsMLDetectDone = false;
|
|
|
|
|
return detectResult;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!string.IsNullOrWhiteSpace(detectConfig.ModelPath) && detectConfig.IsEnabled)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SimboStationMLEngineSet mlSet = null;
|
|
|
|
|
mlSet = SimboStationMLEngineList.FirstOrDefault(t => t.DetectionId == detectConfig.Id);
|
|
|
|
|
if (mlSet == null)
|
|
|
|
|
{
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Exception, $"异常:{detectConfig.Name}未能获取对应配置的模型检测工具");
|
|
|
|
|
detectResult.IsMLDetectDone = false;
|
|
|
|
|
|
|
|
|
|
//HandleDetectDone(detectResult, detectConfig);
|
|
|
|
|
return detectResult;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#region 2.深度学习推理
|
|
|
|
|
//LogAsync(DateTime.Now, LogLevel.Information, $"{detectConfig.Name} 产品{detectResult.TempPid} 模型检测执行");
|
|
|
|
|
|
|
|
|
|
if (!string.IsNullOrWhiteSpace(detectConfig.ModelPath))
|
|
|
|
|
{
|
|
|
|
|
Stopwatch mlWatch = new Stopwatch();
|
|
|
|
|
var req = new MLRequest();
|
|
|
|
|
//之前的检测图片都是相机存储成HImage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
req.ResizeWidth = (int)detectConfig.ModelWidth;
|
|
|
|
|
req.ResizeHeight = (int)detectConfig.ModelHeight;
|
|
|
|
|
// req.LabelNames = detectConfig.GetLabelNames();
|
|
|
|
|
// req.Score = IIConfig.Score;
|
|
|
|
|
req.mImage = originImgSet.Clone();
|
|
|
|
|
|
2025-03-21 08:51:20 +08:00
|
|
|
|
req.in_lable_path = detectConfig.In_lable_path;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
req.confThreshold = detectConfig.ModelconfThreshold;
|
|
|
|
|
req.iouThreshold = 0.3f;
|
|
|
|
|
req.segmentWidth = 320;
|
|
|
|
|
req.out_node_name = "output0";
|
|
|
|
|
switch (detectConfig.ModelType)
|
|
|
|
|
{
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.图像分类:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.目标检测:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.语义分割:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.实例分割:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.目标检测GPU:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Information, $"{detectConfig.Name} 产品{detectResult.TempPid} RunInference BEGIN");
|
|
|
|
|
mlWatch.Start();
|
|
|
|
|
//20230802改成多线程推理 RunInferenceFixed
|
|
|
|
|
|
|
|
|
|
var result = mlSet.StationMLEngine.RunInference(req);
|
|
|
|
|
// var result = mlSet.StationMLEngine.RunInferenceFixed(req);
|
|
|
|
|
mlWatch.Stop();
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Information, $"{detectConfig.Name} 产品{detectResult.TempPid} RunInference END");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// var req = new MLRequest();
|
|
|
|
|
|
|
|
|
|
//req.mImage = inferenceImage;
|
|
|
|
|
|
|
|
|
|
//req.ResizeWidth = detectConfig.ModelWidth;
|
|
|
|
|
//req.ResizeHeight = detectConfig.ModelHeight;
|
|
|
|
|
//req.confThreshold = detectConfig.ModelconfThreshold;
|
|
|
|
|
//req.iouThreshold = 0.3f;
|
|
|
|
|
//req.out_node_name = "output0";
|
|
|
|
|
//req.in_lable_path = detectConfig.in_lable_path;
|
|
|
|
|
|
|
|
|
|
//Stopwatch sw = Stopwatch.StartNew();
|
|
|
|
|
//var result = Dectection[detectionId].RunInference(req);
|
|
|
|
|
//sw.Stop();
|
|
|
|
|
//LogAsync(DateTime.Now, LogLevel.Information, $"{camera.Name} 推理进度1.1,产品{productNumber},耗时{sw.ElapsedMilliseconds}ms");
|
|
|
|
|
|
|
|
|
|
//this.BeginInvoke(new MethodInvoker(delegate ()
|
|
|
|
|
//{
|
|
|
|
|
// // pictureBox1.Image?.Dispose(); // 释放旧图像
|
|
|
|
|
// // pictureBox1.Image = result.ResultMap;
|
|
|
|
|
// richTextBox1.AppendText($"推理成功 {productNumber}, {result.IsSuccess}相机名字{camera.CameraName} 耗时 {mlWatch.ElapsedMilliseconds}ms\n");
|
|
|
|
|
//}));
|
|
|
|
|
//req.mImage?.Dispose();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (result == null || (result != null && !result.IsSuccess))
|
|
|
|
|
{
|
|
|
|
|
detectResult.IsMLDetectDone = false;
|
|
|
|
|
}
|
|
|
|
|
if (result != null && result.IsSuccess)
|
|
|
|
|
{
|
|
|
|
|
detectResult.DetectDetails = result.ResultDetails;
|
|
|
|
|
if (detectResult.DetectDetails != null)
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
detectResult.IsMLDetectDone = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endregion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#region 3.后处理
|
|
|
|
|
#endregion
|
|
|
|
|
//根据那些得分大于阈值的推理结果,判断产品是否成功
|
|
|
|
|
#region 4.最终过滤(逻辑过滤)
|
|
|
|
|
detectResult.DetectDetails?.ForEach(d =>
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
2025-03-24 15:21:16 +08:00
|
|
|
|
// 当前检测项的 过滤条件
|
|
|
|
|
var conditionList = detectConfig.DetectionLableList
|
|
|
|
|
.Where(u=>u.LabelName == d.LabelName)
|
|
|
|
|
.GroupBy(u => u.ResultState)
|
|
|
|
|
.OrderBy(u => u.Key)
|
|
|
|
|
.ToList();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (conditionList.Count == 0)
|
|
|
|
|
{
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
2025-03-24 15:21:16 +08:00
|
|
|
|
d.FinalResult = d.LabelName.ToLower() == "ok"
|
|
|
|
|
? ResultState.OK
|
|
|
|
|
: ResultState.DetectNG;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
d.FinalResult = detectConfig.IsMixModel
|
|
|
|
|
? ResultState.A_NG
|
|
|
|
|
: ResultState.OK;
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
|
2025-03-24 15:21:16 +08:00
|
|
|
|
}
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
|
2025-03-24 15:21:16 +08:00
|
|
|
|
foreach (IGrouping<ResultState, DetectionFilter> group in conditionList)
|
|
|
|
|
{
|
|
|
|
|
bool b = group.ToList().Any(f =>
|
|
|
|
|
{
|
|
|
|
|
return f.FilterOperation(d);
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (b)
|
|
|
|
|
{
|
|
|
|
|
d.FinalResult = group.Key;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
2025-03-16 13:11:08 +08:00
|
|
|
|
});
|
|
|
|
|
#endregion
|
|
|
|
|
#region 5.统计缺陷过滤结果或预处理直接NG
|
|
|
|
|
//if (detectResult.DetectDetails?.Count > 0)
|
|
|
|
|
//{
|
|
|
|
|
// detectResult.ResultState = detectResult.DetectDetails.GroupBy(u => u.FinalResult).OrderBy(u => u.Key).First().First().FinalResult;
|
|
|
|
|
// detectResult.ResultLabel = detectResult.ResultLabel;
|
|
|
|
|
// detectResult.ResultLabelCategoryId = detectResult.ResultLabel;//TODO:设置优先级
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//}
|
|
|
|
|
detectResult.ResultState = detectResult.DetectDetails?
|
|
|
|
|
.GroupBy(u => u.FinalResult)
|
|
|
|
|
.OrderBy(u => u.Key)
|
|
|
|
|
.FirstOrDefault()?.Key ?? ResultState.OK;
|
|
|
|
|
detectResult.ResultLabel = detectResult.ResultLabel;
|
|
|
|
|
detectResult.ResultLabelCategoryId = detectResult.ResultLabel;//TODO:设置优先级
|
|
|
|
|
#endregion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DisplayDetectionResult(detectResult, originImgSet.Clone(), detectionId);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
return detectResult;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 初始化深度学习工具
|
|
|
|
|
/// </summary>
|
|
|
|
|
private bool InitialSimboMLEnginesAsync()
|
|
|
|
|
{
|
|
|
|
|
//深度学习 模型加载
|
|
|
|
|
var resultOK = MLLoadModel();
|
|
|
|
|
return resultOK;
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 深度学习 模型加载
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <returns></returns>
|
|
|
|
|
private bool MLLoadModel()
|
|
|
|
|
{
|
|
|
|
|
bool resultOK = false;
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
// SimboStationMLEngineList = new List<SimboStationMLEngineSet>();
|
|
|
|
|
// _cameraRelatedDetectionDict = IConfig.DetectionConfigs.Select(t => t.ModelPath).Distinct().ToList();
|
|
|
|
|
DetectionConfigs.ForEach(dc =>
|
|
|
|
|
//_cameraRelatedDetectionDict.ForEach(dc =>
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
if (dc.IsEnabled && !string.IsNullOrWhiteSpace(dc.ModelPath))
|
|
|
|
|
{
|
|
|
|
|
if (dc.IsEnableGPU)
|
|
|
|
|
{
|
|
|
|
|
//if (IIConfig.IsLockGPU)
|
|
|
|
|
//{
|
|
|
|
|
//foreach (var validGPU in ValidGPUList2)
|
|
|
|
|
//{
|
|
|
|
|
// if (validGPU.DetectionIds.Contains(dc.Id))
|
|
|
|
|
// {
|
|
|
|
|
var engine = SingleMLLoadModel(dc, true, 0);
|
|
|
|
|
SimboStationMLEngineList.Add(engine);
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//else
|
|
|
|
|
//{
|
|
|
|
|
// foreach (var validGPU in ValidGPUList)
|
|
|
|
|
// {
|
|
|
|
|
// //var validGPU = ValidGPUList.FirstOrDefault(u => u.DetectionIds.Contains(dc.Id));
|
|
|
|
|
// if (validGPU.DetectionId == dc.Id)
|
|
|
|
|
// {
|
|
|
|
|
// var engine = SingleMLLoadModel(dc, true, validGPU.GPUNo);
|
|
|
|
|
// SimboStationMLEngineList.Add(engine);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
//for (int i = 0; i < IConfig.CPUNums; i++)
|
|
|
|
|
for (int i = 0; i < 1; i++)
|
|
|
|
|
{
|
|
|
|
|
//var engine = SingleMLLoadModel(dc, false, i);
|
|
|
|
|
var engine = SingleMLLoadModel(dc, false, i);
|
|
|
|
|
SimboStationMLEngineList.Add(engine);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
resultOK = true;
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Exception, $"异常:模型并发加载异常:{ex.GetExceptionMessage()}");
|
|
|
|
|
resultOK = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return resultOK;
|
|
|
|
|
}
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 单个模型加载
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="dc"></param>
|
|
|
|
|
/// <param name="gpuNum"></param>
|
|
|
|
|
/// <returns></returns>
|
|
|
|
|
private SimboStationMLEngineSet SingleMLLoadModel(DetectionConfig dc, bool isGPU, int coreInx)
|
|
|
|
|
{
|
|
|
|
|
SimboStationMLEngineSet mLEngineSet = new SimboStationMLEngineSet();
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
mLEngineSet.IsUseGPU = isGPU;
|
|
|
|
|
if (isGPU)
|
|
|
|
|
{
|
|
|
|
|
mLEngineSet.GPUNo = coreInx;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
mLEngineSet.CPUNo = coreInx;
|
|
|
|
|
}
|
|
|
|
|
mLEngineSet.DetectionId = dc.Id;
|
|
|
|
|
mLEngineSet.DetectionName = dc.Name;
|
|
|
|
|
|
|
|
|
|
if (!string.IsNullOrWhiteSpace(dc.ModelPath))
|
|
|
|
|
{
|
|
|
|
|
// 根据算法类型创建不同的实例
|
|
|
|
|
switch (dc.ModelType)
|
|
|
|
|
{
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.图像分类:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.目标检测:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
mLEngineSet.StationMLEngine = new SimboObjectDetection();
|
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.语义分割:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
|
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.实例分割:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
mLEngineSet.StationMLEngine = new SimboInstanceSegmentation();
|
|
|
|
|
break;
|
2025-03-21 08:51:20 +08:00
|
|
|
|
case ModelType.目标检测GPU:
|
2025-03-16 13:11:08 +08:00
|
|
|
|
mLEngineSet.StationMLEngine = new SimboDetection();
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
MLInit mLInit;
|
|
|
|
|
string inferenceDevice = "CPU";
|
|
|
|
|
if (dc.IsEnableGPU)
|
|
|
|
|
{
|
|
|
|
|
inferenceDevice = "GPU";
|
|
|
|
|
mLInit = new MLInit(dc.ModelPath, isGPU, coreInx, dc.ModelconfThreshold);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
mLInit = new MLInit(dc.ModelPath, "images", inferenceDevice, (int)dc.ModelWidth, (int)dc.ModelHeight);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool isSuccess = mLEngineSet.StationMLEngine.Load(mLInit);
|
|
|
|
|
if (!isSuccess)
|
|
|
|
|
{
|
|
|
|
|
// throw new ProcessException("异常:模型加载异常", null);
|
|
|
|
|
}
|
|
|
|
|
//LogAsync(DateTime.Now, LogLevel.Information, $"模型加载成功;是否GPU:{isGPU} CoreInx:{coreInx} - {dc.Name}" + $" {dc.ModelType.GetEnumDescription()}:{dc.ModelPath}");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
//throw new ProcessException($"异常:是否GPU:{isGPU} CoreInx:{coreInx} - {dc.Name}模型加载异常:{ex.GetExceptionMessage()}");
|
|
|
|
|
}
|
|
|
|
|
return mLEngineSet;
|
|
|
|
|
}
|
|
|
|
|
private void InitialHalconTools()
|
|
|
|
|
{
|
|
|
|
|
HOperatorSet.SetSystem("parallelize_operators", "true");
|
|
|
|
|
HOperatorSet.SetSystem("reentrant", "true");
|
|
|
|
|
HOperatorSet.SetSystem("global_mem_cache", "exclusive");
|
|
|
|
|
|
|
|
|
|
HalconToolDict = new Dictionary<string, HDevEngineTool>();
|
|
|
|
|
|
|
|
|
|
DetectionConfigs.ForEach(c =>
|
|
|
|
|
{
|
|
|
|
|
if (!c.IsEnabled)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (c.HalconAlgorithemPath_Pre != null)
|
|
|
|
|
LoadHalconTool(c.HalconAlgorithemPath_Pre);
|
|
|
|
|
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void LoadHalconTool(string path)
|
|
|
|
|
{
|
|
|
|
|
if (!HalconToolDict.ContainsKey(path))
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
string algorithemPath = path;
|
|
|
|
|
|
|
|
|
|
if (string.IsNullOrWhiteSpace(algorithemPath))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
string directoryPath = Path.GetDirectoryName(algorithemPath);
|
|
|
|
|
string fileName = Path.GetFileNameWithoutExtension(algorithemPath);
|
|
|
|
|
|
|
|
|
|
HDevEngineTool tool = new HDevEngineTool(directoryPath);
|
|
|
|
|
tool.LoadProcedure(fileName);
|
|
|
|
|
|
|
|
|
|
HalconToolDict[path] = tool;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 预处理
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="detectConfig"></param>
|
|
|
|
|
/// <param name="detectResult"></param>
|
|
|
|
|
public void PreTreated(DetectionConfig detectConfig, DetectStationResult detectResult, Mat MhImage)
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
// detectResult.VisionImageSet.DetectionOriginImage = detectResult.VisionImageSet.HImage.ConvertHImageToBitmap();
|
|
|
|
|
//detectResult.VisionImageSet.PreTreatedBitmap = detectResult.VisionImageSet.HImage.ConvertHImageToBitmap();
|
|
|
|
|
//detectResult.VisionImageSet.DetectionResultImage = detectResult.VisionImageSet.PreTreatedBitmap?.CopyBitmap();
|
|
|
|
|
if (!string.IsNullOrWhiteSpace(detectConfig.HalconAlgorithemPath_Pre))
|
|
|
|
|
{
|
|
|
|
|
HObject obj = OpenCVHelper.MatToHImage(MhImage);
|
|
|
|
|
HImage hImage = HalconHelper.ConvertHObjectToHImage(obj);
|
|
|
|
|
string toolKey = detectConfig.HalconAlgorithemPath_Pre;
|
|
|
|
|
if (!HalconToolDict.ContainsKey(toolKey))
|
|
|
|
|
{
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Exception, $"{detectConfig.Name}未获取预处理算法");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
//Mean_Thre Deviation_Thre Mean_standard Deviation_standard
|
|
|
|
|
var tool = HalconToolDict[toolKey];
|
|
|
|
|
|
|
|
|
|
////tool.InputTupleDic["Mean_Thre"] = 123;
|
|
|
|
|
for (int i = 0; i < detectConfig.PreTreatParams.Count; i++)
|
|
|
|
|
{
|
|
|
|
|
var param = detectConfig.PreTreatParams[i];
|
|
|
|
|
tool.InputTupleDic[param.Name] = double.Parse(param.Value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// tool.InputTupleDic["fCricularity"] = 200;
|
|
|
|
|
|
|
|
|
|
tool.InputImageDic["INPUT_Image"] = hImage;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!tool.RunProcedure(out string errorMsg, out _))
|
|
|
|
|
{
|
|
|
|
|
// detectResult.PreTreatedFlag = false;
|
|
|
|
|
|
|
|
|
|
detectResult.IsPreTreatDone = false;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
var preTreatRet = tool.GetResultTuple("OUTPUT_Flag").I;
|
|
|
|
|
|
|
|
|
|
//var fRCricularity = tool.GetResultTuple("fRCricularity");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// detectResult.IsPreTreatDone = detectResult.VisionImageSet.PreTreatedFlag = preTreatRet == 1;
|
|
|
|
|
//detectResult.IsPreTreatDone = detectResult.VisionImageSet.PreTreatedFlag = true;
|
|
|
|
|
// detectResult.VisionImageSet.PreTreatedTime = DateTime.Now;
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < detectConfig.OUTPreTreatParams.Count; i++)
|
|
|
|
|
{
|
|
|
|
|
var param = detectConfig.OUTPreTreatParams[i];
|
|
|
|
|
tool.InputTupleDic[param.Name] = double.Parse(param.Value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 2023/10/16 新增预处理结果反馈,如果预处理结果为NG,直接返回
|
|
|
|
|
if (preTreatRet != 0)
|
|
|
|
|
{
|
|
|
|
|
detectResult.ResultState = ResultState.DetectNG;
|
|
|
|
|
|
|
|
|
|
detectResult.IsPreTreatNG = true;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// if (detectResult.VisionImageSet.PreTreatedFlag)
|
|
|
|
|
{
|
|
|
|
|
//detectResult.VisionImageSet.MLImage = tool.GetResultObject("OUTPUT_PreTreatedImage");
|
|
|
|
|
//DetectionResultImage
|
|
|
|
|
// detectResult.VisionImageSet.DetectionResultImage = detectResult.VisionImageSet.MLImage.ConvertHImageToBitmap();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// detectResult.VisionImageSet.DetectionResultImage = detectResult.VisionImageSet.MLImage.ConvertHImageToBitmap();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
finally
|
|
|
|
|
{
|
|
|
|
|
//detectResult.VisionImageSet.HImage?.Dispose();
|
|
|
|
|
//detectResult.VisionImageSet.HImage = null;
|
|
|
|
|
// MhImage?.Dispose();
|
|
|
|
|
//MhImage = null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// 显示检测结果
|
|
|
|
|
/// </summary>
|
|
|
|
|
/// <param name="detectResult"></param>
|
|
|
|
|
private void DisplayDetectionResult(DetectStationResult detectResult,Mat result,string DetectionId)
|
|
|
|
|
{
|
|
|
|
|
//结果显示上传
|
|
|
|
|
Task.Run(() =>
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
string displayTxt = detectResult.ResultState.ToString() + "\r\n";
|
|
|
|
|
if (detectResult.DetectDetails != null && detectResult.DetectDetails?.Count > 0)
|
|
|
|
|
{
|
|
|
|
|
detectResult.DetectDetails.ForEach(d =>
|
|
|
|
|
{
|
|
|
|
|
displayTxt +=
|
|
|
|
|
$"{d.LabelName} score:{d.Score.ToString("f2")} area:{d.Area.ToString("f2")}\r\n";
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//if (detectResult.realSpecs != null && detectResult.realSpecs?.Count > 0)
|
|
|
|
|
//{
|
|
|
|
|
// detectResult.realSpecs.ForEach(d =>
|
|
|
|
|
// {
|
|
|
|
|
// displayTxt +=
|
|
|
|
|
// $"{d.Code} :{d.ActualValue} \r\n";
|
|
|
|
|
// });
|
|
|
|
|
//}
|
|
|
|
|
Bitmap resultMask=result.ToBitmap();
|
|
|
|
|
//if (detectResult.VisionImageSet.DetectionResultImage == null && detectResult.VisionImageSet.SizeResultImage == null)
|
|
|
|
|
//{
|
|
|
|
|
// return;
|
|
|
|
|
//}
|
|
|
|
|
//else if (detectResult.VisionImageSet.DetectionResultImage == null && detectResult.VisionImageSet.SizeResultImage != null)
|
|
|
|
|
//{
|
|
|
|
|
// detectResult.VisionImageSet.DetectionResultImage = detectResult.VisionImageSet.SizeResultImage.CopyBitmap();
|
|
|
|
|
// resultMask = detectResult.VisionImageSet.DetectionResultImage.CopyBitmap();
|
|
|
|
|
//}
|
|
|
|
|
//else if (detectResult.VisionImageSet.DetectionResultImage != null && detectResult.VisionImageSet.SizeResultImage != null)
|
|
|
|
|
//{
|
|
|
|
|
// Mat img1 = ConvertBitmapToMat(detectResult.VisionImageSet.SizeResultImage.CopyBitmap()); // 第一张图片,已经带框
|
|
|
|
|
// Mat img2 = ConvertBitmapToMat(detectResult.VisionImageSet.DetectionResultImage.CopyBitmap()); // 第二张图片,已经带框
|
|
|
|
|
|
|
|
|
|
// // 合成两张图像:可以选择叠加或拼接
|
|
|
|
|
// Mat resultImg = new Mat();
|
|
|
|
|
// Cv2.AddWeighted(img1, 0.5, img2, 0.5, 0, resultImg); // 使用加权平均法合成图像
|
|
|
|
|
|
|
|
|
|
// resultMask = resultImg.ToBitmap();
|
|
|
|
|
//}
|
|
|
|
|
//else
|
|
|
|
|
//{
|
|
|
|
|
// resultMask = detectResult.VisionImageSet.DetectionResultImage.CopyBitmap();
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
List<IShapeElement> detectionResultShapes =
|
|
|
|
|
new List<IShapeElement>(detectResult.DetectionResultShapes);
|
|
|
|
|
|
|
|
|
|
DetectResultDisplay resultDisplay = new DetectResultDisplay(detectResult, resultMask, displayTxt);
|
|
|
|
|
detectionResultShapes.Add(resultDisplay);
|
|
|
|
|
List<IShapeElement> detectionResultShapesClone = new List<IShapeElement>(detectionResultShapes);
|
|
|
|
|
|
|
|
|
|
DetectionDone(DetectionId, resultMask, detectionResultShapes);
|
|
|
|
|
|
|
|
|
|
//SaveDetectResultImageAsync(detectResult);
|
|
|
|
|
// SaveDetectResultCSVAsync(detectResult);
|
|
|
|
|
}
|
|
|
|
|
catch (Exception ex)
|
|
|
|
|
{
|
|
|
|
|
// LogAsync(DateTime.Now, LogLevel.Exception,
|
|
|
|
|
// $"{Name}显示{detectResult.DetectName}检测结果异常,{ex.GetExceptionMessage()}");
|
|
|
|
|
}
|
|
|
|
|
finally
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
}
|
2025-03-07 16:29:38 +08:00
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|