上传视觉检测模块

This commit is contained in:
xhm\HP 2025-03-07 16:29:38 +08:00
parent af2e65dd58
commit 4df6b668bf
14 changed files with 1570 additions and 400 deletions

View File

@ -4,7 +4,7 @@
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<Platforms>AnyCPU;X64</Platforms>
<Platforms>AnyCPU;x64</Platforms>
</PropertyGroup>
</Project>

View File

@ -19,7 +19,7 @@
<ItemGroup>
<Reference Include="DVPCameraCS64">
<HintPath>..\X64\Debug\DVPCameraCS64.dll</HintPath>
<HintPath>..\x64\Debug\DVPCameraCS64.dll</HintPath>
</Reference>
</ItemGroup>

View File

@ -22,7 +22,7 @@
<ItemGroup>
<Reference Include="HslCommunication">
<HintPath>..\X64\Debug\HslCommunication.dll</HintPath>
<HintPath>..\x64\Debug\HslCommunication.dll</HintPath>
</Reference>
</ItemGroup>

View File

@ -11,6 +11,9 @@
<Platforms>AnyCPU;x64</Platforms>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
<PackageReference Include="OpenCvSharp4" Version="4.10.0.20241108" />

View File

@ -0,0 +1,666 @@
using OpenCvSharp;
using System.ComponentModel;
using System.Drawing;
using static OpenCvSharp.AgastFeatureDetector;
using System.Text.RegularExpressions;
using System.Text;
using System.Drawing.Design;
namespace DH.Devices.Vision
{
public enum MLModelType
{
[Description("图像分类")]
ImageClassification = 1,
[Description("目标检测")]
ObjectDetection = 2,
//[Description("图像分割")]
//ImageSegmentation = 3
[Description("语义分割")]
SemanticSegmentation = 3,
[Description("实例分割")]
InstanceSegmentation = 4,
[Description("目标检测GPU")]
ObjectGPUDetection = 5
}
public class ModelLabel
{
public string LabelId { get; set; }
[Category("模型标签")]
[DisplayName("模型标签索引")]
[Description("模型识别的标签索引")]
public int LabelIndex { get; set; }
[Category("模型标签")]
[DisplayName("模型标签")]
[Description("模型识别的标签名称")]
public string LabelName { get; set; }
//[Category("模型配置")]
//[DisplayName("模型参数配置")]
//[Description("模型参数配置集合")]
//public ModelParamSetting ModelParamSetting { get; set; } = new ModelParamSetting();
public string GetDisplayText()
{
return $"{LabelId}-{LabelName}";
}
}
public class MLRequest
{
public int ImageChannels = 3;
public Mat mImage;
public int ResizeWidth;
public int ResizeHeight;
public float confThreshold;
public float iouThreshold;
//public int ImageResizeCount;
public bool IsCLDetection;
public int ProCount;
public string in_node_name;
public string out_node_name;
public string in_lable_path;
public int ResizeImageSize;
public int segmentWidth;
public int ImageWidth;
// public List<labelStringBase> OkClassTxtList;
public List<ModelLabel> LabelNames;
}
public enum ResultState
{
[Description("检测NG")]
DetectNG = -3,
//[Description("检测不足TBD")]
// ShortageTBD = -2,
[Description("检测结果TBD")]
ResultTBD = -1,
[Description("OK")]
OK = 1,
// [Description("NG")]
// NG = 2,
//统计结果
[Description("A类NG")]
A_NG = 25,
[Description("B类NG")]
B_NG = 26,
[Description("C类NG")]
C_NG = 27,
}
/// <summary>
/// 深度学习 识别结果明细 面向业务detect 面向深度学习Recongnition、Inference
/// </summary>
public class DetectionResultDetail
{
public string LabelBGR { get; set; }//识别到对象的标签BGR
public int LabelNo { get; set; } // 识别到对象的标签索引
public string LabelName { get; set; }//识别到对象的标签名称
public double Score { get; set; }//识别目标结果的可能性、得分
public string LabelDisplay { get; set; }//识别到对象的 显示信息
public double Area { get; set; }//识别目标的区域面积
public Rectangle Rect { get; set; }//识别目标的外接矩形
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
}
public class MLResult
{
public bool IsSuccess = false;
public string ResultMessage;
public Bitmap ResultMap;
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
}
public class MLInit
{
public string ModelFile;
public string InferenceDevice;
public int InferenceWidth;
public int InferenceHeight;
public string InputNodeName;
public int SizeModel;
public bool bReverse;//尺寸测量正反面
//目标检测Gpu
public bool IsGPU;
public int GPUId;
public float Score_thre;
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
{
ModelFile = modelFile;
IsGPU = isGPU;
GPUId = gpuId;
Score_thre = score_thre;
}
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
{
ModelFile = modelFile;
InferenceDevice = inferenceDevice;
InferenceWidth = inferenceWidth;
InferenceHeight = inferenceHeight;
InputNodeName = inputNodeName;
}
}
public class DetectStationResult
{
public string Pid { get; set; }
public string TempPid { get; set; }
/// <summary>
/// 检测工位名称
/// </summary>
public string DetectName { get; set; }
/// <summary>
/// 深度学习 检测结果
/// </summary>
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
/// <summary>
/// 工位检测结果
/// </summary>
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
public double FinalResultfScore { get; set; } = 0.0;
public string ResultLabel { get; set; } = "";// 多个ng时根据label优先级设定当前检测项的label
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时根据label优先级设定当前检测项的label
public int PreTreatState { get; set; }
public bool IsPreTreatDone { get; set; } = true;
public bool IsAfterTreatDone { get; set; } = true;
public bool IsMLDetectDone { get; set; } = true;
/// <summary>
/// 预处理阶段已经NG
/// </summary>
public bool IsPreTreatNG { get; set; } = false;
/// <summary>
/// 目标检测NG
/// </summary>
public bool IsObjectDetectNG { get; set; } = false;
public DateTime EndTime { get; set; }
public int StationDetectElapsed { get; set; }
public static string NormalizeAndClean(string input)
{
if (input == null) return null;
// Step 1: 标准化字符编码为 Form C (规范组合)
string normalizedString = input.Normalize(NormalizationForm.FormC);
// Step 2: 移除所有空白字符,包括制表符和换行符
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
return cleanedString;
}
}
public class RelatedCamera
{
[Category("关联相机")]
[DisplayName("关联相机")]
[Description("关联相机描述")]
//[TypeConverter(typeof(CollectionCountConvert))]
public string CameraSourceId { get; set; } = "";
public RelatedCamera()
{
}
public RelatedCamera(string cameraSourceId)
{
CameraSourceId = cameraSourceId;
}
}
public class DetectionConfig
{
[ReadOnly(true)]
public string Id { get; set; } = Guid.NewGuid().ToString();
[Category("检测配置")]
[DisplayName("检测配置名称")]
[Description("检测配置名称")]
public string Name { get; set; }
[Category("关联相机")]
[DisplayName("关联相机")]
[Description("关联相机描述")]
public string CameraSourceId { get; set; } = "";
[Category("关联相机集合")]
[DisplayName("关联相机集合")]
[Description("关联相机描述")]
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
[Category("启用配置")]
[DisplayName("是否启用GPU检测")]
[Description("是否启用GPU检测")]
public bool IsEnableGPU { get; set; } = false;
[Category("启用配置")]
[DisplayName("是否混料模型")]
[Description("是否混料模型")]
public bool IsMixModel { get; set; } = false;
[Category("启用配置")]
[DisplayName("是否启用该检测")]
[Description("是否启用该检测")]
public bool IsEnabled { get; set; }
[Category("启用配置")]
[DisplayName("是否加入检测工位")]
[Description("是否加入检测工位")]
public bool IsAddStation { get; set; } = true;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型类型")]
[Description("模型类型ImageClassification-图片分类ObjectDetection目标检测Segmentation-图像分割")]
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
//[Category("2.中检测(深度学习)")]
//[DisplayName("中检测-GPU索引")]
//[Description("GPU索引")]
//public int GPUIndex { get; set; } = 0;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型文件路径")]
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
public string ModelPath { get; set; }
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型宽度")]
[Description("中处理-模型宽度")]
public int ModelWidth { get; set; } = 640;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型高度")]
[Description("中处理-模型高度")]
public int ModelHeight { get; set; } = 640;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型节点名称")]
[Description("中处理-模型节点名称")]
public string ModeloutNodeName { get; set; } = "output0";
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型置信度")]
[Description("中处理-模型置信度")]
public float ModelconfThreshold { get; set; } = 0.5f;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型标签路径")]
[Description("中处理-模型标签路径")]
public string in_lable_path { get; set; }
[Category("4.最终过滤(逻辑过滤)")]
[DisplayName("过滤器集合")]
[Description("最后的逻辑过滤:可根据 识别出对象的 宽度、高度、面积、得分来设置最终检测结果,同一识别目标同一判定,多项过滤器之间为“或”关系")]
public List<DetectionFilter> DetectionFilterList { get; set; } = new List<DetectionFilter>();
//[Category("深度学习配置")]
//[DisplayName("检测配置标签")]
//[Description("检测配置标签关联")]
//public List<DetectConfigLabel> DetectConfigLabelList { get; set; } = new List<DetectConfigLabel>();
public DetectionConfig()
{
}
public DetectionConfig(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
{
ModelPath = modelPath ?? string.Empty;
Name = name;
ModelType = modelType;
IsEnableGPU = isEnableGPU;
Id = Guid.NewGuid().ToString();
CameraSourceId = sCameraSourceId;
}
}
/// <summary>
/// 识别目标定义 class分类信息 Detection Segmentation要识别的对象
/// </summary>
public class RecongnitionLabel //: IComplexDisplay
{
[Category("检测标签定义")]
[Description("检测标签编码")]
[ReadOnly(true)]
public string Id { get; set; } = Guid.NewGuid().ToString();
[Category("检测标签定义")]
[DisplayName("检测标签名称")]
[Description("检测标签名称")]
public string LabelName { get; set; } = "";
[Category("检测标签定义")]
[DisplayName("检测标签描述")]
[Description("检测标签描述,中文描述")]
public string LabelDescription { get; set; } = "";
[Category("检测标签定义")]
[DisplayName("检测标签分类")]
[Description("检测标签分类id")]
//[TypeConverter(typeof(LabelCategoryConverter))]
public string LabelCategory { get; set; } = "";
}
/// <summary>
/// 检测项识别对象
/// </summary>
public class DetectConfigLabel //: IComplexDisplay
{
[Category("检测项标签")]
[DisplayName("检测项标签")]
[Description("检测标签Id")]
//[TypeConverter(typeof(DetectionLabelConverter))]
public string LabelId { get; set; }
[Browsable(false)]
//public string LabelName { get => GetLabelName(); }
[Category("检测项标签")]
[DisplayName("检测标签优先级")]
[Description("检测标签优先级,值越小,优先级越高")]
public int LabelPriority { get; set; } = 0;
//[Category("检测项标签")]
//[DisplayName("标签BGR值")]
//[Description("检测标签BGR值例如0,128,0")]
//public string LabelBGR { get; set; }
//[Category("模型配置")]
//[DisplayName("模型参数配置")]
//[Description("模型参数配置集合")]
//[TypeConverter(typeof(ComplexObjectConvert))]
//[Editor(typeof(PropertyObjectEditor), typeof(UITypeEditor))]
//public ModelParamSetting ModelParamSetting { get; set; } = new ModelParamSetting();
//public string GetDisplayText()
//{
// string dName = "";
// if (!string.IsNullOrWhiteSpace(LabelId))
// {
// using (var scope = GlobalVar.Container.BeginLifetimeScope())
// {
// IProcessConfig config = scope.Resolve<IProcessConfig>();
// var mlBase = config.DeviceConfigs.FirstOrDefault(c => c is VisionEngineInitialConfigBase) as VisionEngineInitialConfigBase;
// if (mlBase != null)
// {
// var targetLabel = mlBase.RecongnitionLabelList.FirstOrDefault(u => u.Id == LabelId);
// if (targetLabel != null)
// {
// dName = targetLabel.GetDisplayText();
// }
// }
// }
// }
// return dName;
//}
//public string GetLabelName()
//{
// var name = "";
// var mlBase = iConfig.DeviceConfigs.FirstOrDefault(c => c is VisionEngineInitialConfigBase) as VisionEngineInitialConfigBase;
// if (mlBase != null)
// {
// var label = mlBase.RecongnitionLabelList.FirstOrDefault(u => u.Id == LabelId);
// if (label != null)
// {
// name = label.LabelName;
// }
// }
// return name;
//}
}
/// <summary>
/// 识别对象定义分类信息 A类B类
/// </summary>
public class RecongnitionLabelCategory //: IComplexDisplay
{
[Category("检测标签分类")]
[Description("检测标签分类")]
[ReadOnly(true)]
public string Id { get; set; } = Guid.NewGuid().ToString();
[Category("检测标签分类")]
[DisplayName("检测标签分类名称")]
[Description("检测标签分类名称")]
public string CategoryName { get; set; } = "A-NG";
[Category("检测标签分类")]
[DisplayName("检测标签分类优先级")]
[Description("检测标签分类优先级,值越小,优先级越高")]
public int CategoryPriority { get; set; } = 0;
public string GetDisplayText()
{
return CategoryPriority + ":" + CategoryName;
}
}
/// <summary>
/// 检测过滤
/// </summary>
public class DetectionFilter ///: IComplexDisplay
{
[Category("过滤器基础信息")]
[DisplayName("检测标签")]
[Description("检测标签信息")]
//[TypeConverter(typeof(DetectionLabelConverter))]
public string LabelId { get; set; }
// [Browsable(false)]
public string LabelName { get; set; }
[Category("过滤器基础信息")]
[DisplayName("是否启用过滤器")]
[Description("是否启用过滤器")]
public bool IsEnabled { get; set; }
[Category("过滤器判定信息")]
[DisplayName("判定结果")]
[Description("过滤器默认判定结果")]
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
[Category("过滤条件")]
[DisplayName("过滤条件集合")]
[Description("过滤条件集合,集合之间为“且”关系")]
//[TypeConverter(typeof(CollectionCountConvert))]
// [Editor(typeof(ComplexCollectionEditor<FilterConditions>), typeof(UITypeEditor))]
public List<FilterConditions> FilterConditionsCollection { get; set; } = new List<FilterConditions>();
public bool FilterOperation(DetectionResultDetail recongnitionResult)
{
return FilterConditionsCollection.All(u =>
{
return u.FilterConditionCollection.Any(c =>
{
double compareValue = 0;
switch (c.FilterPropperty)
{
case DetectionFilterProperty.Width:
compareValue = recongnitionResult.Rect.Width;
break;
case DetectionFilterProperty.Height:
compareValue = recongnitionResult.Rect.Height;
break;
case DetectionFilterProperty.Area:
compareValue = recongnitionResult.Area;
break;
case DetectionFilterProperty.Score:
compareValue = recongnitionResult.Score;
break;
//case RecongnitionTargetFilterProperty.Uncertainty:
// compareValue = 0;
// //defect.Uncertainty;
// break;
}
return compareValue >= c.MinValue && compareValue <= c.MaxValue;
});
});
}
}
public class FilterConditions //: IComplexDisplay
{
[Category("过滤条件")]
[DisplayName("过滤条件集合")]
[Description("过滤条件集合,集合之间为“或”关系")]
//[TypeConverter(typeof(CollectionCountConvert))]
//[Editor(typeof(ComplexCollectionEditor<FilterCondition>), typeof(UITypeEditor))]
public List<FilterCondition> FilterConditionCollection { get; set; } = new List<FilterCondition>();
//public string GetDisplayText()
//{
// if (FilterConditionCollection.Count == 0)
// {
// return "空";
// }
// else
// {
// var desc = string.Join(" OR ", FilterConditionCollection.Select(u => u.GetDisplayText()));
// if (FilterConditionCollection.Count > 1)
// {
// desc = $"({desc})";
// }
// return desc;
// }
//}
}
public class FilterCondition //: IComplexDisplay
{
[Category("识别目标属性")]
[DisplayName("过滤属性")]
[Description("识别目标过滤针对的属性")]
//[TypeConverter(typeof(EnumDescriptionConverter<DetectionFilterProperty>))]
public DetectionFilterProperty FilterPropperty { get; set; } = DetectionFilterProperty.Width;
[Category("过滤值")]
[DisplayName("最小值")]
[Description("最小值")]
public double MinValue { get; set; } = 1;
[Category("过滤值")]
[DisplayName("最大值")]
[Description("最大值")]
public double MaxValue { get; set; } = 99999999;
//public string GetDisplayText()
//{
// return $"{FilterPropperty.GetEnumDescription()}:{MinValue}-{MaxValue}";
//}
}
public enum DetectionFilterProperty
{
[Description("宽度")]
Width = 1,
[Description("高度")]
Height = 2,
[Description("面积")]
Area = 3,
[Description("得分")]
Score = 4,
//[Description("不确定性")]
//Uncertainty = 5,
}
}

View File

@ -0,0 +1,244 @@
#define USE_MULTI_THREAD
using OpenCvSharp;
using OpenCvSharp.Extensions;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Runtime.ExceptionServices;
using System.Threading;
using System.Threading.Tasks;
using System.Security.Cryptography.Xml;
using System.Runtime.InteropServices;
using Newtonsoft.Json;
namespace DH.Devices.Vision
{
/// <summary>
/// 目标检测 GPU
/// </summary>
public class SimboDetection : SimboVisionMLBase
{
public override bool Load(MLInit mLInit)
{
bool res = false;
try
{
Model = MLGPUEngine.InitModel(mLInit.ModelFile, 1, mLInit.Score_thre, mLInit.GPUId, 3, 8);
//Model = MLEngine.InitModel(mLInit.ModelFile, 1, 0.45f, 0, 3);
res = true;
#if USE_MULTI_THREAD
IsCreated = true;
if (IsCreated)
{
_runHandleBefore ??= new AutoResetEvent(false);
_runHandleAfter ??= new ManualResetEvent(false);
_runTask ??= Task.Factory.StartNew(() =>
{
while (IsCreated)
{
_runHandleBefore.WaitOne();
if (IsCreated)
{
_result = RunInferenceFixed(_req);
_runHandleAfter.Set();
}
}
}, TaskCreationOptions.LongRunning);
}
#endif
}
catch (Exception ex)
{
throw ex;
}
return res;
}
#if USE_MULTI_THREAD
MLRequest _req = null;
MLResult _result = null;
public bool IsCreated { get; set; } = false;
Task _runTask = null;
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
object _runLock = new object();
#endif
[HandleProcessCorruptedStateExceptions]
public override MLResult RunInference(MLRequest req)
{
#if USE_MULTI_THREAD
MLResult mlResult = null;
lock (_runLock)
{
_result = new MLResult();
_req = req;
_runHandleAfter.Reset();
_runHandleBefore.Set();
_runHandleAfter.WaitOne();
mlResult = _result;
}
return mlResult;
#else
return RunInferenceFixed(req);
#endif
}
private void ConvertJsonResult(string json, ref MLResult result)
{
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
//
Console.WriteLine("检测结果JSON" + json);
HYoloResult detResult = JsonConvert.DeserializeObject<HYoloResult>(json);
if (detResult == null)
{
return;
}
int iNum = detResult.HYolo.Count;
int IokNum = 0;
for (int ix = 0; ix < iNum; ix++)
{
var det = detResult.HYolo[ix];
var rect = det.rect;
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
// detectionResultDetail.LabelNo = det.classId;
//todo: 标签名相对应
detectionResultDetail.LabelDisplay = det.classname;
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
detectionResultDetail.Score = det.fScore;
detectionResultDetail.LabelName = det.classname;
detectionResultDetail.Area = rect[2] * rect[3];
detectionResultDetail.InferenceResult = ResultState.DetectNG;
result.ResultDetails.Add(detectionResultDetail);
}
}
[HandleProcessCorruptedStateExceptions]
public MLResult RunInferenceFixed(MLRequest req)
{
MLResult mlResult = new MLResult();
Mat originMat = new Mat();
Mat detectMat = new Mat();
try
{
if (req.mImage == null)
{
mlResult.IsSuccess = false;
mlResult.ResultMessage = "异常mat为null无法执行推理";
return mlResult;
}
// resize
detectMat = req.mImage;//1ms
int iWidth = detectMat.Cols;
int iHeight = detectMat.Rows;
// 如果是单通道图像,转换为三通道 RGB 格式
if (detectMat.Channels() == 1)
{
// 将灰度图像转换为RGB格式三通道
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR);
}
else if (detectMat.Channels() == 3)
{
// 如果已经是三通道BGR则直接转换为RGB
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB);
}
//输入数据转化为字节
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数不然数组越界也可以用w*h*c差不多
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
byte[] labellist = new byte[40960]; //新建字节数组label1_str label2_str
byte[] outputByte = new byte[originMat.Total() * 3];
Stopwatch sw = new Stopwatch();
sw.Start();
//mlResult.IsSuccess = true;
unsafe
{
//mlResult.IsSuccess = MLGPUEngine.Inference(Model, inputByte, iWidth, iHeight, 3, req.in_lable_path, ref outputByte[0], ref labellist[0]);
mlResult.IsSuccess = MLGPUEngine.Inference2(Model, inputByte, iWidth, iHeight, 3, req.in_lable_path, ref labellist[0]);
}
sw.Stop();
if (mlResult.IsSuccess)
{
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
//将字节数组转换为字符串
mlResult.ResultMap = originMat.ToBitmap();//4ms
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
if (strGet == null)
{
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
return mlResult;
}
ConvertJsonResult(strGet, ref mlResult);
return mlResult;
}
else
{
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
return mlResult;
}
}
catch (Exception ex)
{
mlResult.ResultMessage = $"深度学习执行推理异常";
return mlResult;
}
finally
{
originMat?.Dispose();
originMat = null;
//maskMat?.Dispose();
// maskMat = null;
detectMat?.Dispose();
detectMat = null;
// maskWeighted?.Dispose();
// maskWeighted = null;
// GC.Collect();
}
}
}
}

View File

@ -0,0 +1,264 @@
//#define USE_MULTI_THREAD
using OpenCvSharp;
using OpenCvSharp.Extensions;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Runtime.ExceptionServices;
using System.Threading;
using System.Threading.Tasks;
using System.Runtime.InteropServices;
using Newtonsoft.Json;
namespace DH.Devices.Vision
{
/// <summary>
/// 实例分割 maskrcnn
/// </summary>
public class SimboInstanceSegmentation : SimboVisionMLBase
{
public override bool Load(MLInit mLInit)
{
bool res = false;
try
{
Model = MLEngine.InitModel(mLInit.ModelFile,
mLInit.InferenceDevice,
mLInit.InputNodeName,
1, 3,
mLInit.InferenceWidth,
mLInit.InferenceHeight,5);
res = true;
#if USE_MULTI_THREAD
IsCreated = true;
if (IsCreated)
{
if (_runHandleBefore == null)
{
_runHandleBefore = new AutoResetEvent(false);
}
if (_runHandleAfter == null)
{
_runHandleAfter = new ManualResetEvent(false);
}
if (_runTask == null)
{
_runTask = Task.Factory.StartNew(() =>
{
while (IsCreated)
{
_runHandleBefore.WaitOne();
if (IsCreated)
{
_result = RunInferenceFixed(_req);
_runHandleAfter.Set();
}
}
}, TaskCreationOptions.LongRunning);
}
}
#endif
}
catch (Exception ex)
{
throw ex;
}
return res;
}
#if USE_MULTI_THREAD
MLRequest _req = null;
MLResult _result = null;
public bool IsCreated { get; set; } = false;
Task _runTask = null;
AutoResetEvent _runHandleBefore = new AutoResetEvent(false);
ManualResetEvent _runHandleAfter = new ManualResetEvent(false);
object _runLock = new object();
#endif
[HandleProcessCorruptedStateExceptions]
public override MLResult RunInference(MLRequest req)
{
#if USE_MULTI_THREAD
MLResult mlResult = null;
lock (_runLock)
{
_result = new MLResult();
_req = req;
_runHandleAfter.Reset();
_runHandleBefore.Set();
_runHandleAfter.WaitOne();
mlResult = _result;
}
return mlResult;
#else
return RunInferenceFixed(req);
#endif
}
private void ConvertJsonResult(string json, ref MLResult result)
{
// json = "{\"FastDetResult\":[{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654843,\"rect\":[175,99,110,594]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654589,\"rect\":[2608,19,104,661]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.654285,\"rect\":[1275,19,104,662]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.620762,\"rect\":[1510,95,107,600]},{\"cls_id\":0,\"cls\":\"liewen\",\"fScore\":0.617812,\"rect\":[2844,93,106,602]}]}";
//
Console.WriteLine("检测结果JSON" + json);
SegResult detResult = JsonConvert.DeserializeObject<SegResult>(json);
if (detResult == null)
{
return;
}
int iNum = detResult.SegmentResult.Count;
int IokNum = 0;
for (int ix = 0; ix < iNum; ix++)
{
var det = detResult.SegmentResult[ix];
var rect = det.rect;
DetectionResultDetail detectionResultDetail = new DetectionResultDetail();
detectionResultDetail.LabelNo = det.classId;
//todo: 标签名相对应
detectionResultDetail.LabelDisplay = det.classname;
detectionResultDetail.Rect = new Rectangle(rect[0], rect[1], rect[2], rect[3]);
detectionResultDetail.Score = det.fScore;
detectionResultDetail.LabelName = det.classname;
detectionResultDetail.Area = det.area;
detectionResultDetail.InferenceResult = ResultState.DetectNG;
result.ResultDetails.Add(detectionResultDetail);
}
}
[HandleProcessCorruptedStateExceptions]
public MLResult RunInferenceFixed(MLRequest req)
{
MLResult mlResult = new MLResult();
Mat originMat = new Mat();
Mat detectMat = new Mat();
try
{
if (req.mImage == null)
{
mlResult.IsSuccess = false;
mlResult.ResultMessage = "异常mat为null无法执行推理";
return mlResult;
}
// resize
detectMat = req.mImage;//1ms
int iWidth = detectMat.Cols;
int iHeight = detectMat.Rows;
// 如果是单通道图像,转换为三通道 RGB 格式
if (detectMat.Channels() == 1)
{
// 将灰度图像转换为RGB格式三通道
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.GRAY2BGR);
}
else if (detectMat.Channels() == 3)
{
// 如果已经是三通道BGR则直接转换为RGB
Cv2.CvtColor(detectMat, originMat, ColorConversionCodes.BGR2RGB);
}
//输入数据转化为字节
var inputByte = new byte[originMat.Total() * 3];//这里必须乘以通道数不然数组越界也可以用w*h*c差不多
Marshal.Copy(originMat.Data, inputByte, 0, inputByte.Length);
byte[] labellist = new byte[40960]; //新建字节数组label1_str label2_str
byte[] outputByte = new byte[originMat.Total() * 3];
Stopwatch sw = new Stopwatch();
sw.Start();
unsafe
{
mlResult.IsSuccess = MLEngine.seg_ModelPredict(Model, inputByte, iWidth, iHeight, 3,
req.in_lable_path, req.confThreshold, req.iouThreshold, req.confThreshold, req.segmentWidth, ref outputByte[0], ref labellist[0]);
//mlResult.IsSuccess = true;
}
sw.Stop();
if (mlResult.IsSuccess)
{
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
//将字节数组转换为字符串
mlResult.ResultMap = originMat.ToBitmap();//4ms
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
Console.WriteLine("strGet:", strGet);
ConvertJsonResult(strGet, ref mlResult);
//解析json字符串
return mlResult;
}
else
{
mlResult.ResultMessage = $"异常:深度学习执行推理失败!";
return mlResult;
}
}
catch (Exception ex)
{
mlResult.ResultMessage = $"深度学习执行推理异常";
return mlResult;
}
finally
{
originMat?.Dispose();
originMat = null;
// GC.Collect();
}
}
}
}

View File

@ -17,23 +17,7 @@ using Newtonsoft.Json;
namespace DH.Devices.Vision
{
//public class SegResult
//{
// public List<Result> SegmentResult;
// public class Result
// {
// public double fScore;
// public int classId;
// public string classname;
// public double area;
// public List<int> rect;
// }
//}
@ -157,7 +141,6 @@ namespace DH.Devices.Vision
}
int iNum = detResult.SegmentResult.Count;
int IokNum = 0;
for (int ix = 0; ix < iNum; ix++)
{
var det = detResult.SegmentResult[ix];
@ -188,7 +171,7 @@ namespace DH.Devices.Vision
{
MLResult mlResult = new MLResult();
Mat originMat=new Mat() ;
Mat tempMat;
Mat detectMat;
try
{
if (req.mImage == null)
@ -199,26 +182,26 @@ namespace DH.Devices.Vision
}
// resize
tempMat = req.mImage;//1ms
detectMat = req.mImage;//1ms
int iWidth = tempMat.Cols;
int iHeight = tempMat.Rows;
int iWidth = detectMat.Cols;
int iHeight = detectMat.Rows;
// 如果是单通道图像,转换为三通道 RGB 格式
if (tempMat.Channels() == 1)
if (detectMat.Channels() == 1)
{
// 将灰度图像转换为RGB格式三通道
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.GRAY2BGR);
Cv2.CvtColor( detectMat,originMat, ColorConversionCodes.GRAY2BGR);
}
else if (tempMat.Channels() == 3)
else if (detectMat.Channels() == 3)
{
// 如果已经是三通道BGR则直接转换为RGB
Cv2.CvtColor( tempMat,originMat, ColorConversionCodes.BGR2RGB);
Cv2.CvtColor( detectMat,originMat, ColorConversionCodes.BGR2RGB);
}
@ -250,9 +233,6 @@ namespace DH.Devices.Vision
{
mlResult.ResultMessage = $"深度学习推理成功,耗时:{sw.ElapsedMilliseconds} ms";
//Mat maskWeighted = new Mat(iHeight, iWidth, MatType.CV_8UC3, outputByte);
//mlResult.ResultMap = BitmapConverter.ToBitmap(maskWeighted);//4ms
//将字节数组转换为字符串
mlResult.ResultMap = originMat.ToBitmap();//4ms
string strGet = System.Text.Encoding.Default.GetString(labellist, 0, labellist.Length);
@ -261,9 +241,6 @@ namespace DH.Devices.Vision
ConvertJsonResult(strGet, ref mlResult);
//maskWeighted?.Dispose();
//maskWeighted = null;
// 解析json字符串
return mlResult;
}

View File

@ -0,0 +1,18 @@
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Runtime.ExceptionServices;
using System.Text;
using System.Threading.Tasks;
using System.Xml.Linq;
namespace DH.Devices.Vision
{
public class SimboVisionDriver
{
}
}

View File

@ -44,6 +44,31 @@ namespace DH.Devices.Vision
// ColorLut = new Mat(1, 256, MatType.CV_8UC3, ColorMap);
}
}
public class HYoloResult
{
//{
// "HYolo": [{
// "fScore": "0.687012",
// "classId": 0,
// "classname": "quejiao",
// "rect": [421, 823, 6, 8]
// }]
//}
public List<Result> HYolo;
public class Result
{
public double fScore;
public int classId;
public string classname;
//public double area;
public List<int> rect;
}
}
public class SegResult
{
public List<Result> SegmentResult;

View File

@ -1,299 +0,0 @@
using OpenCvSharp;
using System.ComponentModel;
using System.Drawing;
using static OpenCvSharp.AgastFeatureDetector;
using System.Text.RegularExpressions;
using System.Text;
namespace DH.Devices.Vision
{
public enum MLModelType
{
[Description("图像分类")]
ImageClassification = 1,
[Description("目标检测")]
ObjectDetection = 2,
//[Description("图像分割")]
//ImageSegmentation = 3
[Description("语义分割")]
SemanticSegmentation = 3,
[Description("实例分割")]
InstanceSegmentation = 4,
[Description("目标检测GPU")]
ObjectGPUDetection = 5
}
public class MLRequest
{
public int ImageChannels = 3;
public Mat mImage;
public int ResizeWidth;
public int ResizeHeight;
public float confThreshold;
public float iouThreshold;
//public int ImageResizeCount;
public bool IsCLDetection;
public int ProCount;
public string in_node_name;
public string out_node_name;
public string in_lable_path;
public int ResizeImageSize;
public int segmentWidth;
public int ImageWidth;
// public List<labelStringBase> OkClassTxtList;
// public List<ModelLabel> LabelNames;
public float Score;
}
public enum ResultState
{
[Description("检测NG")]
DetectNG = -3,
//[Description("检测不足TBD")]
// ShortageTBD = -2,
[Description("检测结果TBD")]
ResultTBD = -1,
[Description("OK")]
OK = 1,
// [Description("NG")]
// NG = 2,
//统计结果
[Description("A类NG")]
A_NG = 25,
[Description("B类NG")]
B_NG = 26,
[Description("C类NG")]
C_NG = 27,
}
/// <summary>
/// 深度学习 识别结果明细 面向业务detect 面向深度学习Recongnition、Inference
/// </summary>
public class DetectionResultDetail
{
public string LabelBGR { get; set; }//识别到对象的标签BGR
public int LabelNo { get; set; } // 识别到对象的标签索引
public string LabelName { get; set; }//识别到对象的标签名称
public double Score { get; set; }//识别目标结果的可能性、得分
public string LabelDisplay { get; set; }//识别到对象的 显示信息
public double Area { get; set; }//识别目标的区域面积
public Rectangle Rect { get; set; }//识别目标的外接矩形
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
}
public class MLResult
{
public bool IsSuccess = false;
public string ResultMessage;
public Bitmap ResultMap;
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
}
public class MLInit
{
public string ModelFile;
public string InferenceDevice;
public int InferenceWidth;
public int InferenceHeight;
public string InputNodeName;
public int SizeModel;
public bool bReverse;//尺寸测量正反面
//目标检测Gpu
public bool IsGPU;
public int GPUId;
public float Score_thre;
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
{
ModelFile = modelFile;
IsGPU = isGPU;
GPUId = gpuId;
Score_thre = score_thre;
}
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
{
ModelFile = modelFile;
InferenceDevice = inferenceDevice;
InferenceWidth = inferenceWidth;
InferenceHeight = inferenceHeight;
InputNodeName = inputNodeName;
}
}
public class DetectStationResult
{
public string Pid { get; set; }
public string TempPid { get; set; }
/// <summary>
/// 检测工位名称
/// </summary>
public string DetectName { get; set; }
/// <summary>
/// 深度学习 检测结果
/// </summary>
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
/// <summary>
/// 工位检测结果
/// </summary>
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
public double FinalResultfScore { get; set; } = 0.0;
public string ResultLabel { get; set; } = "";// 多个ng时根据label优先级设定当前检测项的label
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时根据label优先级设定当前检测项的label
public int PreTreatState { get; set; }
public bool IsPreTreatDone { get; set; } = true;
public bool IsAfterTreatDone { get; set; } = true;
public bool IsMLDetectDone { get; set; } = true;
/// <summary>
/// 预处理阶段已经NG
/// </summary>
public bool IsPreTreatNG { get; set; } = false;
/// <summary>
/// 目标检测NG
/// </summary>
public bool IsObjectDetectNG { get; set; } = false;
public DateTime EndTime { get; set; }
public int StationDetectElapsed { get; set; }
public static string NormalizeAndClean(string input)
{
if (input == null) return null;
// Step 1: 标准化字符编码为 Form C (规范组合)
string normalizedString = input.Normalize(NormalizationForm.FormC);
// Step 2: 移除所有空白字符,包括制表符和换行符
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
return cleanedString;
}
}
public class RelatedCamera
{
[Category("关联相机")]
[DisplayName("关联相机")]
[Description("关联相机描述")]
//[TypeConverter(typeof(CollectionCountConvert))]
public string CameraSourceId { get; set; } = "";
}
public class VisionEngine
{
[ReadOnly(true)]
public string Id { get; set; } = Guid.NewGuid().ToString();
[Category("检测配置")]
[DisplayName("检测配置名称")]
[Description("检测配置名称")]
public string Name { get; set; }
[Category("关联相机")]
[DisplayName("关联相机")]
[Description("关联相机描述")]
public string CameraSourceId { get; set; } = "";
[Category("关联相机集合")]
[DisplayName("关联相机集合")]
[Description("关联相机描述")]
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
[Category("启用配置")]
[DisplayName("是否启用GPU检测")]
[Description("是否启用GPU检测")]
public bool IsEnableGPU { get; set; } = false;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型类型")]
[Description("模型类型ImageClassification-图片分类ObjectDetection目标检测Segmentation-图像分割")]
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
//[Category("2.中检测(深度学习)")]
//[DisplayName("中检测-GPU索引")]
//[Description("GPU索引")]
//public int GPUIndex { get; set; } = 0;
[Category("2.中检测(深度学习)")]
[DisplayName("中检测-模型文件路径")]
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
public string ModelPath { get; set; }
public VisionEngine(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
{
ModelPath = modelPath ?? string.Empty;
Name = name;
ModelType = modelType;
IsEnableGPU = isEnableGPU;
Id = Guid.NewGuid().ToString();
CameraSourceId = sCameraSourceId;
}
}
}

View File

@ -17,60 +17,60 @@ Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Commons", "Commons", "{0AB4
EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "DH.Commons", "DH.Commons\DH.Commons.csproj", "{027373EC-C5CB-4161-8D43-AB6009371FDE}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "DH.Devices.Vision", "DH.Devices.Vision\DH.Devices.Vision.csproj", "{97B55FCF-54A3-449E-8437-735E65C35291}"
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "DH.Devices.Vision", "DH.Devices.Vision\DH.Devices.Vision.csproj", "{97B55FCF-54A3-449E-8437-735E65C35291}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "DH.Devices.Camera", "DH.Devices.Camera\DH.Devices.Camera.csproj", "{1378A932-1C25-40EF-BA31-A3463B23F4E5}"
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "DH.Devices.Camera", "DH.Devices.Camera\DH.Devices.Camera.csproj", "{1378A932-1C25-40EF-BA31-A3463B23F4E5}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "DH.Devices.PLC", "DH.Devices.PLC\DH.Devices.PLC.csproj", "{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}"
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "DH.Devices.PLC", "DH.Devices.PLC\DH.Devices.PLC.csproj", "{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Debug|X64 = Debug|X64
Debug|x64 = Debug|x64
Release|Any CPU = Release|Any CPU
Release|X64 = Release|X64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|Any CPU.Build.0 = Debug|Any CPU
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|X64.ActiveCfg = Debug|X64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|X64.Build.0 = Debug|X64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|x64.ActiveCfg = Debug|x64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Debug|x64.Build.0 = Debug|x64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|Any CPU.ActiveCfg = Release|Any CPU
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|Any CPU.Build.0 = Release|Any CPU
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|X64.ActiveCfg = Release|X64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|X64.Build.0 = Release|X64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|x64.ActiveCfg = Release|x64
{17CC10DC-9132-4A03-AADA-2D1070418C9B}.Release|x64.Build.0 = Release|x64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|Any CPU.Build.0 = Debug|Any CPU
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|X64.ActiveCfg = Debug|X64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|X64.Build.0 = Debug|X64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|x64.ActiveCfg = Debug|x64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Debug|x64.Build.0 = Debug|x64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|Any CPU.ActiveCfg = Release|Any CPU
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|Any CPU.Build.0 = Release|Any CPU
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|X64.ActiveCfg = Release|X64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|X64.Build.0 = Release|X64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|x64.ActiveCfg = Release|x64
{027373EC-C5CB-4161-8D43-AB6009371FDE}.Release|x64.Build.0 = Release|x64
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|Any CPU.Build.0 = Debug|Any CPU
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|X64.ActiveCfg = Debug|X64
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|X64.Build.0 = Debug|X64
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|x64.ActiveCfg = Debug|x64
{97B55FCF-54A3-449E-8437-735E65C35291}.Debug|x64.Build.0 = Debug|x64
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|Any CPU.ActiveCfg = Release|Any CPU
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|Any CPU.Build.0 = Release|Any CPU
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|X64.ActiveCfg = Release|X64
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|X64.Build.0 = Release|X64
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|x64.ActiveCfg = Release|x64
{97B55FCF-54A3-449E-8437-735E65C35291}.Release|x64.Build.0 = Release|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|Any CPU.Build.0 = Debug|Any CPU
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|X64.ActiveCfg = Debug|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|X64.Build.0 = Debug|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|x64.ActiveCfg = Debug|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Debug|x64.Build.0 = Debug|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|Any CPU.ActiveCfg = Release|Any CPU
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|Any CPU.Build.0 = Release|Any CPU
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|X64.ActiveCfg = Release|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|X64.Build.0 = Release|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|x64.ActiveCfg = Release|x64
{1378A932-1C25-40EF-BA31-A3463B23F4E5}.Release|x64.Build.0 = Release|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|Any CPU.Build.0 = Debug|Any CPU
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|X64.ActiveCfg = Debug|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|X64.Build.0 = Debug|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|x64.ActiveCfg = Debug|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Debug|x64.Build.0 = Debug|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|Any CPU.ActiveCfg = Release|Any CPU
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|Any CPU.Build.0 = Release|Any CPU
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|X64.ActiveCfg = Release|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|X64.Build.0 = Release|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|x64.ActiveCfg = Release|x64
{458B2CF6-6F1B-4B8B-BB85-C6FD7F453A5D}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE

View File

@ -25,7 +25,7 @@
<ItemGroup>
<Reference Include="DVPCameraCS64">
<HintPath>..\X64\Debug\DVPCameraCS64.dll</HintPath>
<HintPath>..\x64\Debug\DVPCameraCS64.dll</HintPath>
</Reference>
</ItemGroup>

View File

@ -13,6 +13,7 @@ using System;
using System.CodeDom;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Runtime.InteropServices;
@ -258,41 +259,111 @@ namespace DHSoftware
public volatile int ProductNum_Total = 0;
public volatile int ProductNum_OK = 0;
private readonly object _cameraSummaryLock = new object();
List<DetectionConfig> detectionList = new List<DetectionConfig>();
public List<RecongnitionLabel> RecongnitionLabelList { get; set; } = new List<RecongnitionLabel>();
public DateTime sraerttime;
private void HandleStartButton()
{
CurrentMachine = true;
List<VisionEngine> detectionList = new List<VisionEngine>();
detectionList.Add(new VisionEngine("相机1", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam1"));
detectionList.Add(new VisionEngine("相机2", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam2"));
detectionList.Add(new VisionEngine("相机3", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam3"));
detectionList.Add(new VisionEngine("相机4", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam4"));
//[Category("深度学习检测配置")]
//[DisplayName("检测标签定义集合")]
//[Description("定义检测标签的集合例如Seg/Detection模式断裂、油污、划伤...Class模式ok、ng、上面、下面、套环、正常...")]
//[TypeConverter(typeof(CollectionCountConvert))]
//[Editor(typeof(ComplexCollectionEditor<RecongnitionLabel>), typeof(UITypeEditor))]
RecongnitionLabel recongnition=new RecongnitionLabel
{
LabelName="youwu",
LabelDescription="油污",
LabelCategory="A_NG"
};
RecongnitionLabel recongnition2 = new RecongnitionLabel
{
LabelName = "youwu",
LabelDescription = "油污",
LabelCategory = "A_NG"
};
RecongnitionLabel recongnition3 = new RecongnitionLabel
{
LabelName = "youwu",
LabelDescription = "油污",
LabelCategory = "A_NG"
};
RecongnitionLabelList.Add(recongnition);
RecongnitionLabelList.Add(recongnition2);
RecongnitionLabelList.Add(recongnition3);
var det1 = new DetectionConfig("相机1", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam1");
var det2 = new DetectionConfig("相机2", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam2");
var det3 = new DetectionConfig("相机3", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam3");
var det4 = new DetectionConfig("相机4", MLModelType.ObjectDetection, @"D:\DHSoftware\DHSoftware\Models\yolov3.cfg", false, "Cam4");
List<RelatedCamera> CameraCollects=new List<RelatedCamera>();
CameraCollects.Add(new RelatedCamera("Cam1"));
List<RelatedCamera> CameraCollects2 = new List<RelatedCamera>();
CameraCollects2.Add(new RelatedCamera("Cam2"));
List<RelatedCamera> CameraCollects3 = new List<RelatedCamera>();
CameraCollects3.Add(new RelatedCamera("Cam3"));
List<RelatedCamera> CameraCollects4 = new List<RelatedCamera>();
CameraCollects4.Add(new RelatedCamera("Cam4"));
List<RelatedCamera> CameraCollects5 = new List<RelatedCamera>();
CameraCollects5.Add(new RelatedCamera("Cam5"));
float Conf = 0.5f;
det1.CameraCollects = CameraCollects;
det1.ModelconfThreshold = Conf;
det1.ModelWidth = 640;
det1.ModelHeight = 640;
det1.in_lable_path = " D:\\PROJECTS\\MaodingTest1\\Vision\\cam1.txt";
det2.CameraCollects = CameraCollects2;
det1.ModelconfThreshold = Conf;
det1.ModelWidth = 640;
det1.ModelHeight = 640;
det1.in_lable_path = " D:\\PROJECTS\\MaodingTest1\\Vision\\cam2.txt";
det3.CameraCollects = CameraCollects3;
det1.ModelconfThreshold = Conf;
det1.ModelWidth = 640;
det1.ModelHeight = 640;
det1.in_lable_path = " D:\\PROJECTS\\MaodingTest1\\Vision\\cam3.txt";
det4.CameraCollects = CameraCollects4;
det1.ModelconfThreshold = Conf;
det1.ModelWidth = 640;
det1.ModelHeight = 640;
det1.in_lable_path = " D:\\PROJECTS\\MaodingTest1\\Vision\\cam4.txt";
detectionList.Add(det1);
detectionList.Add(det2);
detectionList.Add(det3);
detectionList.Add(det4);
Cameras.Clear();
Dectection.Clear();
_cameraRelatedDetectionDict = new();
detectionList.ForEach(detection =>
{
// detection.CameraCollects.ForEach(cam =>
detection.CameraCollects.ForEach(cam =>
{
List<string> Dets = new List<string>
{
detection.Id
};
if (!_cameraRelatedDetectionDict.ContainsKey(detection.CameraSourceId))
if (!_cameraRelatedDetectionDict.ContainsKey(cam.CameraSourceId))
{
_cameraRelatedDetectionDict.Add(detection.CameraSourceId, Dets);
_cameraRelatedDetectionDict.Add(cam.CameraSourceId, Dets);
}
else
{
_cameraRelatedDetectionDict[detection.CameraSourceId].Add(detection.Id);
_cameraRelatedDetectionDict[cam.CameraSourceId].Add(detection.Id);
}
}
//);
);
});
//Add the code for the "启动" button click here
@ -310,10 +381,7 @@ namespace DHSoftware
do3ThinkCamera2.CameraConnect();
do3ThinkCamera1.OnHImageOutput += OnCameraHImageOutput;
do3ThinkCamera2.OnHImageOutput += OnCameraHImageOutput;
var simbo1 = new SimboObjectDetection
{
};
var simbo1 = new SimboObjectDetection();
MLInit mLInit;
string inferenceDevice = "CPU";
@ -321,12 +389,11 @@ namespace DHSoftware
simbo1.Load(mLInit);
Dectection.Add(do3ThinkCamera1.CameraName, simbo1);
var simbo2 = new SimboObjectDetection
{
Dectection.Add(det1.Id, simbo1);
};
var simbo2 = new SimboObjectDetection();
MLInit mLInit2;
string inferenceDevice2 = "CPU";
@ -334,7 +401,11 @@ namespace DHSoftware
simbo2.Load(mLInit2);
Dectection.Add(do3ThinkCamera2.CameraName, simbo2);
for(int i = 0;i<Dectection.Count;i++)
{
}
Dectection.Add(det1.Id, simbo2);
PLC.IP = "192.168.6.6";
PLC.Port = 502;
@ -375,10 +446,7 @@ namespace DHSoftware
PieceCount++;
Task.Run(() => {
this.BeginInvoke(new MethodInvoker(delegate () { richTextBox1.AppendText("入料成功" + PieceCount); }));
});
int index = PieceNumberToIndex(pieceNumber);
// productDatas.Add(pData);
//转盘2 的物料是不是重新覆盖之前的pDta
@ -387,6 +455,11 @@ namespace DHSoftware
ProductData pData = new ProductData("", pieceNumber, ProductBaseCount);
_productLists[index][pieceNumber] = pData;
}
string logStr = $"时间:{DateTime.Now} 轴{axisIndex}新产品{pieceNumber}加入队列{index}----入料计数{PieceCount}\n";
Task.Run(() => {
this.BeginInvoke(new MethodInvoker(delegate () { richTextBox1.AppendText(logStr); }));
});
DateTime dtNow = DateTime.Now;
UpdateCT(null, (float)(dtNow - _ctTime).TotalSeconds);
_ctTime = dtNow;
@ -472,28 +545,173 @@ namespace DHSoftware
for (int i = 0; i < detectionDict.Count; i++)
{
string d = detectionDict[i];
string detectionId = detectionDict[i];
try
{
DetectionConfig detectConfig = null;
//找到对应的配置
if (!string.IsNullOrWhiteSpace(detectionId))
{
detectConfig = detectionList.FirstOrDefault(u => u.Id == detectionId);
}
else
{
detectConfig = detectionList.FirstOrDefault(u => u.CameraSourceId == camera.CameraName);
}
// LogAsync(DateTime.Now, LogLevel.Information, $"{camera.Name} 推理进度1.3,产品{productNumber}");
if (detectConfig == null)
{
//未能获得检测配置
return ;
}
#region 1.
#endregion
#region 2.
var req = new MLRequest();
req.mImage = imageSet.Clone();
req.ResizeWidth = 640;
req.ResizeHeight = 640;
req.confThreshold = 0.5f;
req.ResizeWidth = detectConfig.ModelWidth;
req.ResizeHeight = detectConfig.ModelHeight;
req.confThreshold = detectConfig.ModelconfThreshold;
req.iouThreshold = 0.3f;
req.out_node_name = "output0";
req.in_lable_path = "D:\\PROJECTS\\MaodingTest1\\Vision\\cam1.txt";
req.out_node_name = detectConfig.ModeloutNodeName;
req.in_lable_path = detectConfig.in_lable_path;
//req.LabelNames = dc.GetLabelNames();
req.Score = 0.5f;
//HOperatorSet.WriteImage(req.HImage, "png", 0, @"D:\\666.png");
var result = Dectection[camera.CameraName].RunInference(req);
Stopwatch
sw = new Stopwatch();
sw.Start();
var result = Dectection[detectionId].RunInference(req);
sw.Stop();
//LogAsync(DateTime.Now, LogLevel.Information, $"{camera.Name} 推理进度1.1,产品{productNumber},耗时{sw.ElapsedMilliseconds}ms");
#endregion
#region 3.
DetectStationResult detectResult = new DetectStationResult();
if (result == null || (result != null && !result.IsSuccess))
{
detectResult.IsMLDetectDone = false;
}
if (result != null && result.IsSuccess)
{
detectResult.DetectDetails = result.ResultDetails;
if (detectResult.DetectDetails != null)
{
}
else
{
detectResult.IsMLDetectDone = false;
}
}
#endregion
#region 3.
#endregion
//根据那些得分大于阈值的推理结果,判断产品是否成功
#region 4.
detectResult.DetectDetails?.ForEach(d =>
{
this.BeginInvoke(new MethodInvoker(delegate () {
pictureBox1.Image = result.ResultMap; richTextBox1.AppendText("推理成功" + productNumber+ result.IsSuccess+ "\n"); }));
//当前检测项的 过滤条件
//var conditionList = detectConfig.DetectionFilterList
// .Where(u => u.IsEnabled && u.LabelName == d.LabelName)
// .GroupBy(u => u.ResultState)
// .OrderBy(u => u.Key)
// .ToList();
//当前检测项的 过滤条件
var conditionList = detectConfig.DetectionFilterList
.Where(u => u.IsEnabled && u.LabelName == d.LabelName)
.GroupBy(u => u.ResultState)
.OrderBy(u => u.Key)
.ToList();
if (conditionList.Count == 0)
{
if (d.LabelName.ToLower() == "ok")
{
d.FinalResult = d.InferenceResult = ResultState.OK;
}
else
{
d.FinalResult = d.InferenceResult = ResultState.DetectNG;
}
}
else
{
if (detectConfig.IsMixModel)
{
d.FinalResult = d.InferenceResult = ResultState.A_NG;
}
else
{
//将所有已将筛选出来的缺陷进行过滤
d.FinalResult = d.InferenceResult = ResultState.OK;
}
}
foreach (IGrouping<ResultState, DetectionFilter> group in conditionList)
{
bool b = group.ToList().Any(f =>
{
return f.FilterOperation(d);
});
if (b)
{
d.FinalResult = group.Key;
break;
}
//else
//{
// d.FinalResult = d.InferenceResult = ResultState.OK;
//}
}
});
#endregion
#region 5.NG
if (detectResult.DetectDetails?.Count > 0)
{
detectResult.ResultState = detectResult.DetectDetails.GroupBy(u => u.FinalResult).OrderBy(u => u.Key).First().First().FinalResult;
detectResult.ResultLabel = detectResult.ResultLabel;
detectResult.ResultLabelCategoryId = detectResult.ResultLabel;//TODO:设置优先级
//////根据优先级设置ResultLabel
//if (detectionLabels.Count > 0)
//{
// foreach (var l in detectionLabels)
// {
// var isExist = DetectDetails.Any(o => NormalizeAndClean(o.LabelName) == NormalizeAndClean(l.LabelName) && o.FinalResult == ResultState.DetectNG);
// if (isExist)
// {
// ResultLabelCategoryId = l.LabelCategoryId;
// break;
// }
// }
//}
return;
}
#endregion
resultStates.Add(detectResult.ResultState);
product.ResultCollection.Add(detectResult);
this.BeginInvoke(new MethodInvoker(delegate ()
{
pictureBox1.Image = result.ResultMap; richTextBox1.AppendText($"推理成功{productNumber}{result.IsSuccess} 推理耗时{sw.ElapsedMilliseconds}ms总推理耗时\n");
}));
//DetectStationResult temp;
////LogAsync(DateTime.Now, LogLevel.Information, $"{camera.Name} 推理进度1.4,产品{productNumber}");
//// 检测结果
@ -541,10 +759,7 @@ namespace DHSoftware
if (!product.InferenceFinished())
{
//if (!(camera.Name == "Cam8"))
//{
// return;
//}
return;
}
ProductNum_Total++;
@ -559,6 +774,30 @@ namespace DHSoftware
richTextBox1.SelectionStart = richTextBox1.TextLength;
richTextBox1.ScrollToCaret();
}));
#region 6.
if (product.ResultCollection.Any(u => u.ResultState != ResultState.OK))
{
//检测结果TBD
// CurTrigger = TriggerSettings.FirstOrDefault(u => u.TriggerType == TriggerType.B_NG);
product.ProductResult = ResultState.B_NG;
product.ProductLabelCategory = ResultState.B_NG.GetEnumDescription();
product.ProductLabel = ResultState.B_NG.GetEnumDescription();
}
else
{
// CurTrigger = TriggerSettings.FirstOrDefault(u => u.TriggerType == TriggerType.OK);
product.ProductResult = ResultState.OK;
product.ProductLabelCategory = ResultState.OK.GetEnumDescription();
product.ProductLabel = ResultState.OK.GetEnumDescription();
}
#endregion
#region 7.
#endregion
//LogAsync(DateTime.Now, LogLevel.Information, $"推理完成,产品{product.PieceNumber}获取结果");
@ -661,9 +900,19 @@ namespace DHSoftware
if (isSuccess)
{
// LogAsync(DateTime.Now, LogLevel.Assist, $"产品{productNumber}出列成功:{isSuccess}" +
//$"产品结果:{temp.ProductResult.GetEnumDescription()}" +
//$"当前队列产品数量:{tmpDic.Count}");
string logStr =$"{DateTime.Now}产品{productNumber}出列成功:{isSuccess}" +
$"产品结果:{temp.ProductResult.GetEnumDescription()}" +
$"当前队列产品数量:{tmpDic.Count}";
this.BeginInvoke(new MethodInvoker(delegate () {
int currentScrollPosition = richTextBox1.GetPositionFromCharIndex(richTextBox1.TextLength).Y;
richTextBox1.AppendText(logStr);
// 设置回原来的滚动位置
richTextBox1.SelectionStart = richTextBox1.TextLength;
richTextBox1.ScrollToCaret();
}));
}
tryTimes--;
Thread.Sleep(1);
@ -703,6 +952,29 @@ namespace DHSoftware
}
});
}
public void SetResult()
{
//// detectResult.IsPreTreatDone = detectResult.VisionImageSet.PreTreatedFlag
////2024-02-29 目标检测不能全是NG
//if (IsPreTreatNG || IsObjectDetectNG)
//{
// return;
//}
//if (IsPreTreatDone && IsMLDetectDone && IsAfterTreatDone)
//{
// ResultState = ResultState.OK;
// ResultLabel = ResultState.OK.GetEnumDescription();
//}
}
private void HandleStopButton()
{
Cameras.Clear();