using AntdUI;

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Xml.Linq;
using static System.ComponentModel.Design.ObjectSelectorEditor;

namespace DH.Devices.Vision
{
    public abstract class SimboVisionMLBase
    {
        public Mat ColorLut { get; set; }
        public byte[] ColorMap { get; set; }

        public MLModelType ModelType { get; set; }

        public IntPtr Model { get; set; }

        public abstract bool Load(MLInit mLInit);

        public abstract MLResult RunInference(MLRequest req);

        public void Dispose()
        {
            try
            {
                MLGPUEngine.FreePredictor(Model);
            }
            catch (Exception e) { }
           // MLEngine.FreePredictor(Model);
        }
        public void Dispose2()
        {
            try
            {
                MLEngine.FreePredictor(Model);
            }
            catch (Exception e) { }
            // MLEngine.FreePredictor(Model);
        }
        public SimboVisionMLBase()
        {
           // ColorMap = OpenCVHelper.GetColorMap(256);//使用3个通道
           // ColorLut = new Mat(1, 256, MatType.CV_8UC3, ColorMap);
        }
    }
    public class HYoloResult
    {
        //{
        //	"HYolo":	[{
        //			"fScore":	"0.687012",
        //			"classId":	0,
        //			"classname":	"quejiao",
        //			"rect":	[421, 823, 6, 8]
        //    }]
        //}
        public List<Result> HYolo;
        public class Result
        {

            public double fScore;
            public int classId;
            public string classname;

            //public double area;
            public List<int> rect;


        }

    }
    public class SegResult
    {
        public List<Result> SegmentResult;
        public class Result
        {

            public double fScore;
            public int classId;
            public string classname;

            public double area;
            public List<int> rect;


        }

    }

 
    public static class MLGPUEngine
    {

        // private const string sPath = @"D:\XHM\XHM\M018_NET7.0speed - 副本 - 副本\src\x64\Debug\HYolo.dll";



        [DllImport("HYolo.dll", EntryPoint = "InitModel")]
         //public static extern IntPtr InitModel(string model_path, int batch_size, float score_thre, int device_id, int number_of_warmup_runs);
       public static extern IntPtr InitModel(string model_path, int batch_size, float score_thre, int device_id, int number_of_warmup_runs,int request_infer);




        [DllImport("HYolo.dll", EntryPoint = "PreHot")]

        public static extern bool PreHot(IntPtr model, byte[] img, int W, int H, int C);



        [DllImport("HYolo.dll", EntryPoint = "Inference")]
        public static extern bool Inference(IntPtr model, byte[] img, int W, int H, int C,

            string labelText, ref byte Mask_output, ref byte label);


        [DllImport("HYolo.dll", EntryPoint = "Inference2")]
        public static extern bool Inference2(IntPtr model, byte[] img, int W, int H, int C,

            string labelText,  ref byte label);


        [DllImport("HYolo.dll", EntryPoint = "FreePredictor")]
        public static extern void FreePredictor(IntPtr model);




    }
    public static class MLEngine
    {

        //private const string sPath = @"D:\\C#\磁环项目\\OpenVinoYolo\\openvino_Yolov5_v7_v2.0\\openvino_Yolov5_v7\\Program\ConsoleProject\\x64\\Release\\QuickSegmentDynamic.dll";


        [DllImport("QuickSegmentDynamic.dll", EntryPoint = "InitModel")]
        public static extern IntPtr InitModel(string model_filename, string inferenceDevice, string input_node_name, int bacth, int inferenceChannels, int InferenceWidth, int InferenceHeight,int  request_infer);


        /// <summary>
        /// 分割
        /// </summary>
        /// <param name="model"></param>
        /// <param name="img"></param>
        /// <param name="W"></param>
        /// <param name="H"></param>
        /// <param name="C"></param>
        /// <param name="labelText"></param>
        /// <param name="conf_threshold"></param>
        /// <param name="IOU_THRESHOLD"></param>
        /// <param name="fScoreThre"></param>
        /// <param name="segmentWidth"></param>
        /// <param name="Mask_output"></param>
        /// <param name="label"></param>
        /// <returns></returns>
        [DllImport("QuickSegmentDynamic.dll", EntryPoint = "seg_ModelPredict")]

        public static extern bool seg_ModelPredict(IntPtr model, byte[] img, int W, int H, int C,
            string labelText, float conf_threshold, float IOU_THRESHOLD, float fScoreThre, int segmentWidth,
            ref byte Mask_output, ref byte label);



        /// <summary>
        /// 目标检测
        /// </summary>
        /// <param name="model"></param>
        /// <param name="img"></param>
        /// <param name="W"></param>
        /// <param name="H"></param>
        /// <param name="C"></param>
        /// <param name="nodes"></param>
        /// <param name="labelText"></param>
        /// <param name="conf_threshold"></param>
        /// <param name="IOU_THRESHOLD"></param>
        /// <param name="Mask_output"></param>
        /// <param name="label"></param>
        [DllImport("QuickSegmentDynamic.dll", EntryPoint = "det_ModelPredict")]
        public static extern bool det_ModelPredict(IntPtr model, byte[] img, int W, int H, int C,
            string nodes,// ++++++++++++++++++++++++++++++++++++
            string labelText, float conf_threshold, float IOU_THRESHOLD,
            ref byte Mask_output, ref byte label);


        [DllImport("QuickSegmentDynamic.dll", EntryPoint = "FreePredictor")]
        public static extern void FreePredictor(IntPtr model);


    }
    public static class MLEngine1
    {
        /**********************************************************************/
        /*****************          1.推理DLL导入实现          ****************/
        /**********************************************************************/
        //private const string sPath = @"D:\M018_NET7.0\src\Debug\model_infer.dll";
        // 加载推理相关方法
        [DllImport("model_infer.dll", EntryPoint = "InitModel")] // 模型统一初始化方法: 需要yml、pdmodel、pdiparams
        //[DllImport(sPath, EntryPoint = "InitModel")] // 模型统一初始化方法: 需要yml、pdmodel、pdiparams
        public static extern IntPtr InitModel(string model_type, string model_filename, string params_filename, string cfg_file, bool use_gpu, int gpu_id, ref byte paddlex_model_type);

        [DllImport("model_infer.dll", EntryPoint = "Det_ModelPredict")]  // PaddleDetection模型推理方法
        public static extern bool Det_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, IntPtr output, int[] BoxesNum, ref byte label);

        [DllImport("model_infer.dll", EntryPoint = "Seg_ModelPredict")]  // PaddleSeg模型推理方法
        public static extern bool Seg_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, ref byte output);

        [DllImport("model_infer.dll", EntryPoint = "Cls_ModelPredict")]  // PaddleClas模型推理方法
        public static extern bool Cls_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, ref float score, ref byte category, ref int category_id);

        [DllImport("model_infer.dll", EntryPoint = "Mask_ModelPredict")]  // Paddlex的MaskRCNN模型推理方法
        public static extern bool Mask_ModelPredict(IntPtr model, byte[] img, int W, int H, int C, IntPtr output, ref byte Mask_output, int[] BoxesNum, ref byte label);
        //public static extern bool Mask_ModelPredict(IntPtr model, IntPtr img, int W, int H, int C, IntPtr output, ref byte Mask_output, int[] BoxesNum, ref byte label);
        [DllImport("model_infer.dll", EntryPoint = "DestructModel")]  // 分割、检测、识别模型销毁方法
        public static extern void DestructModel(IntPtr model);

    }

}