using HalconDotNet; using OpenCvSharp; using OpenCvSharp.Extensions; using System; using System.Drawing; using System.Drawing.Imaging; using System.IO; using System.Linq; using System.Runtime.InteropServices; using System.Threading.Tasks; namespace XKRS.Common.Model { public class OpenCVEngineTool : IDisposable { public void Dispose() { throw new NotImplementedException(); } } public static class OpenCVHelper { [DllImport("kernel32.dll", EntryPoint = "RtlMoveMemory", SetLastError = false)] public static extern void CopyMemory(IntPtr dest, IntPtr src, uint count); public static byte[] MatToBytes(this Mat image) { if (image != null && image.Data != IntPtr.Zero) { int size = (int)(image.Total() * image.ElemSize()); byte[] bytes = new byte[size]; Marshal.Copy(image.Data, bytes, 0, size); return bytes; } else { return null; } } /// /// 获取水平拼接图片 /// /// /// /// public static Bitmap GetHConcatImage(Bitmap map1, Bitmap map2) { var mat1 = map1.ToMat(); var mat2 = map2.ToMat(); //var maxChannel = Math.Max(mat1.Channels(), mat2.Channels()); //var maxType = Math.Max(mat1.Type(), mat2.Type()); //转通道数 mat1 = mat1.CvtColor(ColorConversionCodes.GRAY2BGRA); //转位深 mat1.ConvertTo(mat1, mat2.Type()); Mat resMat = new Mat(mat1.Height, mat1.Width, mat2.Type(), new Scalar(0)); Cv2.HConcat(mat1, mat2, resMat); mat1.Dispose(); mat2.Dispose(); return resMat.ToBitmap(); } public static Mat To3Channels(this Mat img) { if (img == null) return null; Mat resMat = new Mat(img.Rows, img.Cols, MatType.CV_8UC3); Mat[] channels = new Mat[3]; ; for (int i = 0; i < 3; i++) { channels[i] = img; } Cv2.Merge(channels, resMat); img.Dispose(); img = null; return resMat; } /// /// 把OpenCV图像转换到Halcon图像 /// /// OpenCV图像_Mat /// Halcon图像_HObject public static HObject MatToHImage(Mat mImage) { try { HObject hImage; int matChannels = 0; // 通道数 Type matType = null; uint width, height; // 宽,高 width = height = 0; // 宽,高初始化 // 获取通道数 matChannels = mImage.Channels(); if (matChannels == 0) { return null; } if (matChannels == 1) // 单通道 //if (true) // 单通道 { IntPtr ptr; // 灰度图通道 Mat[] mats = mImage.Split(); // 改自:Mat.GetImagePointer1(mImage, out ptr, out matType, out width, out height); // ptr=2157902018096 cType=byte width=830 height=822 ptr = mats[0].Data; // 取灰度图值 matType = mImage.GetType(); // byte height = (uint)mImage.Rows; // 高 width = (uint)mImage.Cols; // 宽 // 改自:hImage = new HObject(new OpenCvSharp.Size(width, height), MatType.CV_8UC1, newScalar(0)); byte[] dataGrayScaleImage = new byte[width * height]; //Mat dataGrayScaleImage = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC1); unsafe { fixed (byte* ptrdata = dataGrayScaleImage) { #region 按行复制 //for (int i = 0; i < height; i++) //{ // CopyMemory((IntPtr)(ptrdata + width * i), new IntPtr((long)ptr + width *i), width); //} #endregion CopyMemory((IntPtr)ptrdata, new IntPtr((long)ptr), width * height); HOperatorSet.GenImage1(out hImage, "byte", width, height, (IntPtr)ptrdata); } } return hImage; } else if (matChannels == 3) // 三通道 { IntPtr ptrRed; // R通道图 IntPtr ptrGreen; // G通道图 IntPtr ptrBlue; // B通道图 Mat[] mats = mImage.Split(); ptrRed = mats[0].Data; // 取R通道值 ptrGreen = mats[1].Data; // 取G通道值 ptrBlue = mats[2].Data; // 取B通道值 matType = mImage.GetType(); // 类型 height = (uint)mImage.Rows; // 高 width = (uint)mImage.Cols; // 宽 // 改自:hImage = new HObject(new OpenCvSharp.Size(width, height), MatType.CV_8UC1, new Scalar(0)); byte[] dataRed = new byte[width * height]; //Mat dataGrayScaleImage = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC1); byte[] dataGreen = new byte[width * height]; byte[] dataBlue = new byte[width * height]; unsafe { fixed (byte* ptrdataRed = dataRed, ptrdataGreen = dataGreen, ptrdataBlue = dataBlue) { #region 按行复制 //HImage himg = new HImage("byte", width, height, (IntPtr)ptrdataRed); //for (int i = 0; i < height; i++) //{ // CopyMemory((IntPtr)(ptrdataRed + width * i), new IntPtr((long)ptrRed +width * i), width); // CopyMemory((IntPtr)(ptrdataGreen + width * i), new IntPtr((long)ptrGreen+ width * i), width); // CopyMemory((IntPtr)(ptrdataBlue + width * i), new IntPtr((long)ptrBlue +width * i), width); //} #endregion CopyMemory((IntPtr)ptrdataRed, new IntPtr((long)ptrRed), width* height); // 复制R通道 CopyMemory((IntPtr)ptrdataGreen, new IntPtr((long)ptrGreen), width * height); // 复制G通道 CopyMemory((IntPtr)ptrdataBlue, new IntPtr((long)ptrBlue), width * height); // 复制B通道 HOperatorSet.GenImage3(out hImage, "byte", width, height, (IntPtr)ptrdataRed, (IntPtr)ptrdataGreen, (IntPtr)ptrdataBlue); // 合成 } } return hImage; } else { return null; } } catch (Exception ex) { throw ex; } } public static Mat HImageToMat(this HObject hobj) { try { Mat mImage; HTuple htChannels; HTuple cType = null; HTuple width, height; width = height = 0; HOperatorSet.CountChannels(hobj, out htChannels); if (htChannels.Length == 0) { return null; } if (htChannels[0].I == 1) { HTuple ptr; HOperatorSet.GetImagePointer1(hobj, out ptr, out cType, out width, out height); mImage = new Mat(height, width, MatType.CV_8UC1, new Scalar(0)); unsafe { CopyMemory(mImage.Data, new IntPtr((byte*)ptr.IP), (uint)(width * height));// CopyMemory(要复制到的地址,复制源的地址,复制的长度) } return mImage; } else if (htChannels[0].I == 3) { HTuple ptrRed; HTuple ptrGreen; HTuple ptrBlue; HOperatorSet.GetImagePointer3(hobj, out ptrRed, out ptrGreen, out ptrBlue, out cType, out width, out height); Mat pImageRed = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC1); Mat pImageGreen = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC1); Mat pImageBlue = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC1); mImage = new Mat(new OpenCvSharp.Size(width, height), MatType.CV_8UC3, new Scalar(0, 0, 0)); unsafe { CopyMemory(pImageRed.Data, new IntPtr((byte*)ptrRed.IP), (uint)(width * height)); // CopyMemory(要复制到的地址,复制源的地址,复制的长度)_Red CopyMemory(pImageGreen.Data, new IntPtr((byte*)ptrGreen.IP), (uint)(width * height)); // CopyMemory(要复制到的地址,复制源的地址,复制的长度)_Green CopyMemory(pImageBlue.Data, new IntPtr((byte*)ptrBlue.IP), (uint)(width * height)); // CopyMemory(要复制到的地址,复制源的地址,复制的长度)_Blue } Mat[] multi = new Mat[] { pImageBlue, pImageGreen, pImageRed }; Cv2.Merge(multi, mImage); pImageRed.Dispose(); pImageRed = null; pImageGreen.Dispose(); pImageGreen = null; pImageBlue.Dispose(); pImageBlue = null; return mImage; } else { return null; } } catch (Exception ex) { throw ex; } } /// /// 从内存流中指定位置,读取数据 /// /// /// /// /// public static int ReadData(MemoryStream curStream, int startPosition, int length) { int result = -1; byte[] tempData = new byte[length]; curStream.Position = startPosition; curStream.Read(tempData, 0, length); result = BitConverter.ToInt32(tempData, 0); return result; } /// /// 使用byte[]数据,生成三通道 BMP 位图 /// /// /// /// /// public static Bitmap CreateColorBitmap(byte[] originalImageData, int originalWidth, int originalHeight, byte[] color_map) { // 指定8位格式,即256色 Bitmap resultBitmap = new Bitmap(originalWidth, originalHeight, System.Drawing.Imaging.PixelFormat.Format8bppIndexed); // 将该位图存入内存中 MemoryStream curImageStream = new MemoryStream(); resultBitmap.Save(curImageStream, System.Drawing.Imaging.ImageFormat.Bmp); curImageStream.Flush(); // 由于位图数据需要DWORD对齐(4byte倍数),计算需要补位的个数 int curPadNum = ((originalWidth * 8 + 31) / 32 * 4) - originalWidth; // 最终生成的位图数据大小 int bitmapDataSize = ((originalWidth * 8 + 31) / 32 * 4) * originalHeight; // 数据部分相对文件开始偏移,具体可以参考位图文件格式 int dataOffset = ReadData(curImageStream, 10, 4); // 改变调色板,因为默认的调色板是32位彩色的,需要修改为256色的调色板 int paletteStart = 54; int paletteEnd = dataOffset; int color = 0; for (int i = paletteStart; i < paletteEnd; i += 4) { byte[] tempColor = new byte[4]; tempColor[0] = (byte)color; tempColor[1] = (byte)color; tempColor[2] = (byte)color; tempColor[3] = (byte)0; color++; curImageStream.Position = i; curImageStream.Write(tempColor, 0, 4); } // 最终生成的位图数据,以及大小,高度没有变,宽度需要调整 byte[] destImageData = new byte[bitmapDataSize]; int destWidth = originalWidth + curPadNum; // 生成最终的位图数据,注意的是,位图数据 从左到右,从下到上,所以需要颠倒 for (int originalRowIndex = originalHeight - 1; originalRowIndex >= 0; originalRowIndex--) { int destRowIndex = originalHeight - originalRowIndex - 1; for (int dataIndex = 0; dataIndex < originalWidth; dataIndex++) { // 同时还要注意,新的位图数据的宽度已经变化destWidth,否则会产生错位 destImageData[destRowIndex * destWidth + dataIndex] = originalImageData[originalRowIndex * originalWidth + dataIndex]; } } // 将流的Position移到数据段 curImageStream.Position = dataOffset; // 将新位图数据写入内存中 curImageStream.Write(destImageData, 0, bitmapDataSize); curImageStream.Flush(); // 将内存中的位图写入Bitmap对象 resultBitmap = new Bitmap(curImageStream); resultBitmap = Convert8to24(resultBitmap, color_map); // 转为3通道图像 return resultBitmap; } // 实现单通道到多通道 public static Bitmap Convert8to24(this Bitmap bmp, byte[] color_map) { Rectangle rect = new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height); BitmapData bitmapData = bmp.LockBits(rect, ImageLockMode.ReadOnly, bmp.PixelFormat); //计算实际8位图容量 int size8 = bitmapData.Stride * bmp.Height; byte[] grayValues = new byte[size8]; //// 申请目标位图的变量,并将其内存区域锁定 Bitmap TempBmp = new Bitmap(bmp.Width, bmp.Height, PixelFormat.Format24bppRgb); BitmapData TempBmpData = TempBmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height), ImageLockMode.WriteOnly, PixelFormat.Format24bppRgb); //// 获取图像参数以及设置24位图信息 int stride = TempBmpData.Stride; // 扫描线的宽度 int offset = stride - TempBmp.Width; // 显示宽度与扫描线宽度的间隙 IntPtr iptr = TempBmpData.Scan0; // 获取bmpData的内存起始位置 int scanBytes = stride * TempBmp.Height;// 用stride宽度,表示这是内存区域的大小 // 下面把原始的显示大小字节数组转换为内存中实际存放的字节数组 byte[] pixelValues = new byte[scanBytes]; //为目标数组分配内存 System.Runtime.InteropServices.Marshal.Copy(bitmapData.Scan0, grayValues, 0, size8); for (int i = 0; i < bmp.Height; i++) { for (int j = 0; j < bitmapData.Stride; j++) { if (j >= bmp.Width) continue; int indexSrc = i * bitmapData.Stride + j; int realIndex = i * TempBmpData.Stride + j * 3; // color_id:就是预测出来的结果 int color_id = (int)grayValues[indexSrc] % 256; if (color_id == 0) // 分割中类别1对应值1,而背景往往为0,因此这里就将背景置为[0, 0, 0] { // 空白 pixelValues[realIndex] = 0; pixelValues[realIndex + 1] = 0; pixelValues[realIndex + 2] = 0; } else { // 替换为color_map中的颜色值 pixelValues[realIndex] = color_map[color_id * 3]; pixelValues[realIndex + 1] = color_map[color_id * 3 + 1]; pixelValues[realIndex + 2] = color_map[color_id * 3 + 2]; } } } //Parallel.For(0, width * height, i => // { // int index = (i + 1) % width + widthIn4 * ((i + 1) / width) - 1; // showBitmapBuffer[index * 6] = bitmapBuffer[index * 6] = data[i * 2]; // showBitmapBuffer[index * 6 + 1] = bitmapBuffer[index * 6 + 1] = data[i * 2 + 1]; // }); // 用Marshal的Copy方法,将刚才得到的内存字节数组复制到BitmapData中 Marshal.Copy(pixelValues, 0, iptr, scanBytes); TempBmp.UnlockBits(TempBmpData); // 解锁内存区域 bmp.UnlockBits(bitmapData); return TempBmp; } // 获取伪彩色图的RGB值 -- 同时也是适用于检测框分类颜色 public static byte[] GetColorMap(int num_classes = 256) { num_classes += 1; byte[] color_map = new byte[num_classes * 3]; for (int i = 0; i < num_classes; i++) { int j = 0; int lab = i; while (lab != 0) { color_map[i * 3] |= (byte)(((lab >> 0) & 1) << (7 - j)); color_map[i * 3 + 1] |= (byte)(((lab >> 1) & 1) << (7 - j)); color_map[i * 3 + 2] |= (byte)(((lab >> 2) & 1) << (7 - j)); j += 1; lab >>= 3; } } // 去掉底色 color_map = color_map.Skip(3).ToArray(); return color_map; } // GetGrayMap public static byte[] GetGrayMap(int num_classes = 256) { byte[] color_map = new byte[num_classes]; for (int i = 0; i < num_classes; i++) { if (i <= 100) color_map[i] = 0; if (i > 100 && i <= 200) color_map[i] = 100; if (i > 200) color_map[i] = 255; } return color_map; } /// /// 像素点阵转换为bitmap 二值化图 /// /// byte[]数组 /// 图片的宽度 /// 图片的高度 /// bitmap图片 public static Bitmap CreateBinaryBitmap(byte[] rawValues, int width, int height) { Bitmap bmp = new Bitmap(width, height, System.Drawing.Imaging.PixelFormat.Format8bppIndexed); BitmapData bmpData = bmp.LockBits(new System.Drawing.Rectangle(0, 0, width, height), ImageLockMode.WriteOnly, System.Drawing.Imaging.PixelFormat.Format8bppIndexed); //获取图像参数 int stride = bmpData.Stride; // 扫描线的宽度 int offset = stride - width; // 显示宽度与扫描线宽度的间隙 IntPtr iptr = bmpData.Scan0; // 获取bmpData的内存起始位置 int scanBytes = stride * height;// 用stride宽度,表示这是内存区域的大小 //下面把原始的显示大小字节数组转换为内存中实际存放的字节数组 int posScan = 0, posReal = 0;// 分别设置两个位置指针,指向源数组和目标数组 byte[] pixelValues = new byte[scanBytes]; //为目标数组分配内存 for (int x = 0; x < height; x++) { //下面的循环节是模拟行扫描 for (int y = 0; y < width; y++) { pixelValues[posScan++] = rawValues[posReal++] == 0 ? (byte)0 : (byte)255; } posScan += offset; //行扫描结束,要将目标位置指针移过那段“间隙” } //用Marshal的Copy方法,将刚才得到的内存字节数组复制到BitmapData中 Marshal.Copy(pixelValues, 0, iptr, scanBytes); bmp.UnlockBits(bmpData); // 解锁内存区域 //下面的代码是为了修改生成位图的索引表,从伪彩修改为灰度 ColorPalette tempPalette; using (Bitmap tempBmp = new Bitmap(1, 1, System.Drawing.Imaging.PixelFormat.Format8bppIndexed)) { tempPalette = tempBmp.Palette; } for (int i = 0; i < 256; i++) { tempPalette.Entries[i] = System.Drawing.Color.FromArgb(i, i, i); } bmp.Palette = tempPalette; return bmp; } /// /// 像素点阵转换为bitmap灰度图 /// /// byte[]数组 /// 图片的宽度 /// 图片的高度 /// bitmap图片 public static Bitmap CreateGrayBitmap(byte[] rawValues, int width, int height) { Bitmap bmp = new Bitmap(width, height, System.Drawing.Imaging.PixelFormat.Format8bppIndexed); BitmapData bmpData = bmp.LockBits(new System.Drawing.Rectangle(0, 0, width, height), ImageLockMode.WriteOnly, System.Drawing.Imaging.PixelFormat.Format8bppIndexed); //获取图像参数 int stride = bmpData.Stride; // 扫描线的宽度 int offset = stride - width; // 显示宽度与扫描线宽度的间隙 IntPtr iptr = bmpData.Scan0; // 获取bmpData的内存起始位置 int scanBytes = stride * height;// 用stride宽度,表示这是内存区域的大小 //下面把原始的显示大小字节数组转换为内存中实际存放的字节数组 int posScan = 0, posReal = 0;// 分别设置两个位置指针,指向源数组和目标数组 byte[] pixelValues = new byte[scanBytes]; //为目标数组分配内存 for (int x = 0; x < height; x++) { //下面的循环节是模拟行扫描 for (int y = 0; y < width; y++) { pixelValues[posScan++] = rawValues[posReal++]; } posScan += offset; //行扫描结束,要将目标位置指针移过那段“间隙” } //用Marshal的Copy方法,将刚才得到的内存字节数组复制到BitmapData中 Marshal.Copy(pixelValues, 0, iptr, scanBytes); bmp.UnlockBits(bmpData); // 解锁内存区域 //下面的代码是为了修改生成位图的索引表,从伪彩修改为灰度 ColorPalette tempPalette; using (Bitmap tempBmp = new Bitmap(1, 1, System.Drawing.Imaging.PixelFormat.Format8bppIndexed)) { tempPalette = tempBmp.Palette; } for (int i = 0; i < 256; i++) { tempPalette.Entries[i] = System.Drawing.Color.FromArgb(i, i, i); } bmp.Palette = tempPalette; return bmp; } //分别基于像素(GetPixel和SetPixel)、基于内存、基于指针这三种方法增强图片对比度。 // 第一种方法:像素提取法。速度慢 基于像素:400-600ms public static Bitmap MethodBaseOnPixel(Bitmap bitmap, int degree) { Color curColor; int grayR, grayG, grayB; double Deg = (100.0 + degree) / 100.0; for (int i = 0; i < bitmap.Width; i++) { for (int j = 0; j < bitmap.Height; j++) { curColor = bitmap.GetPixel(i, j); grayR = Convert.ToInt32((((curColor.R / 255.0 - 0.5) * Deg + 0.5)) * 255); grayG = Convert.ToInt32((((curColor.G / 255.0 - 0.5) * Deg + 0.5)) * 255); grayB = Convert.ToInt32((((curColor.B / 255.0 - 0.5) * Deg + 0.5)) * 255); if (grayR < 0) grayR = 0; else if (grayR > 255) grayR = 255; if (grayB < 0) grayB = 0; else if (grayB > 255) grayB = 255; if (grayG < 0) grayG = 0; else if (grayG > 255) grayG = 255; bitmap.SetPixel(i, j, Color.FromArgb(grayR, grayG, grayB)); } } return bitmap; } // 第二种方法:基于内存 17-18ms public static unsafe Bitmap MethodBaseOnMemory(Bitmap bitmap, int degree) { if (bitmap == null) { return null; } double Deg = (100.0 + degree) / 100.0; int width = bitmap.Width; int height = bitmap.Height; int length = height * 3 * width; byte[] RGB = new byte[length]; BitmapData data = bitmap.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); System.IntPtr Scan0 = data.Scan0; System.Runtime.InteropServices.Marshal.Copy(Scan0, RGB, 0, length); double gray = 0; for (int i = 0; i < RGB.Length; i += 3) { for (int j = 0; j < 3; j++) { gray = (((RGB[i + j] / 255.0 - 0.5) * Deg + 0.5)) * 255.0; if (gray > 255) gray = 255; if (gray < 0) gray = 0; RGB[i + j] = (byte)gray; } } System.Runtime.InteropServices.Marshal.Copy(RGB, 0, Scan0, length);// 此处Copy是之前Copy的逆操作 bitmap.UnlockBits(data); return bitmap; } //第三种方法:基于指针 20-23ms public static unsafe Bitmap MethodBaseOnPtr(Bitmap b, int degree) { if (b == null) { return null; } try { double num = 0.0; double num2 = (100.0 + degree) / 100.0; num2 *= num2; int width = b.Width; int height = b.Height; BitmapData bitmapdata = b.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); byte* numPtr = (byte*)bitmapdata.Scan0; int offset = bitmapdata.Stride - (width * 3); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { for (int k = 0; k < 3; k++) { num = ((((((double)numPtr[k]) / 255.0) - 0.5) * num2) + 0.5) * 255.0; if (num < 0.0) { num = 0.0; } if (num > 255.0) { num = 255.0; } numPtr[k] = (byte)num; } numPtr += 3; } numPtr += offset; } b.UnlockBits(bitmapdata); return b; } catch { return b; } } public static double GetRoiArae(Mat src, Rect rect) { //初始面积为0 double Area = 0; //获取感兴趣区域 src = src[rect]; //转为单通道 Mat gray = src.CvtColor(ColorConversionCodes.BGR2GRAY); //二值化 Mat binary = gray.Threshold(0, 255, ThresholdTypes.Otsu | ThresholdTypes.Binary); //求轮廓 不连通会有多个闭合区域 OpenCvSharp.Point[][] contours; HierarchyIndex[] hierarchy; Cv2.FindContours(binary, out contours, out hierarchy, RetrievalModes.List, ContourApproximationModes.ApproxSimple); for (int i = 0; i < contours.Count(); i++) { //所有面积相加 Area += Cv2.ContourArea(contours[i], false); } return Area; } } }