300 lines
9.1 KiB
C#
300 lines
9.1 KiB
C#
using OpenCvSharp;
|
||
using System.ComponentModel;
|
||
using System.Drawing;
|
||
using static OpenCvSharp.AgastFeatureDetector;
|
||
using System.Text.RegularExpressions;
|
||
using System.Text;
|
||
|
||
namespace DH.Devices.Vision
|
||
{
|
||
public enum MLModelType
|
||
{
|
||
[Description("图像分类")]
|
||
ImageClassification = 1,
|
||
[Description("目标检测")]
|
||
ObjectDetection = 2,
|
||
//[Description("图像分割")]
|
||
//ImageSegmentation = 3
|
||
[Description("语义分割")]
|
||
SemanticSegmentation = 3,
|
||
[Description("实例分割")]
|
||
InstanceSegmentation = 4,
|
||
[Description("目标检测GPU")]
|
||
ObjectGPUDetection = 5
|
||
}
|
||
public class MLRequest
|
||
{
|
||
public int ImageChannels = 3;
|
||
public Mat mImage;
|
||
public int ResizeWidth;
|
||
public int ResizeHeight;
|
||
|
||
public float confThreshold;
|
||
|
||
public float iouThreshold;
|
||
|
||
//public int ImageResizeCount;
|
||
public bool IsCLDetection;
|
||
public int ProCount;
|
||
public string in_node_name;
|
||
|
||
public string out_node_name;
|
||
|
||
public string in_lable_path;
|
||
|
||
public int ResizeImageSize;
|
||
public int segmentWidth;
|
||
public int ImageWidth;
|
||
|
||
// public List<labelStringBase> OkClassTxtList;
|
||
|
||
|
||
// public List<ModelLabel> LabelNames;
|
||
|
||
public float Score;
|
||
|
||
}
|
||
public enum ResultState
|
||
{
|
||
|
||
[Description("检测NG")]
|
||
DetectNG = -3,
|
||
|
||
//[Description("检测不足TBD")]
|
||
// ShortageTBD = -2,
|
||
[Description("检测结果TBD")]
|
||
ResultTBD = -1,
|
||
[Description("OK")]
|
||
OK = 1,
|
||
// [Description("NG")]
|
||
// NG = 2,
|
||
//统计结果
|
||
[Description("A类NG")]
|
||
A_NG = 25,
|
||
[Description("B类NG")]
|
||
B_NG = 26,
|
||
[Description("C类NG")]
|
||
C_NG = 27,
|
||
}
|
||
/// <summary>
|
||
/// 深度学习 识别结果明细 面向业务:detect 面向深度学习:Recongnition、Inference
|
||
/// </summary>
|
||
public class DetectionResultDetail
|
||
{
|
||
public string LabelBGR { get; set; }//识别到对象的标签BGR
|
||
|
||
|
||
public int LabelNo { get; set; } // 识别到对象的标签索引
|
||
|
||
public string LabelName { get; set; }//识别到对象的标签名称
|
||
|
||
public double Score { get; set; }//识别目标结果的可能性、得分
|
||
|
||
public string LabelDisplay { get; set; }//识别到对象的 显示信息
|
||
|
||
public double Area { get; set; }//识别目标的区域面积
|
||
|
||
public Rectangle Rect { get; set; }//识别目标的外接矩形
|
||
|
||
public RotatedRect MinRect { get; set; }//识别目标的最小外接矩形(带角度)
|
||
|
||
public ResultState InferenceResult { get; set; }//只是模型推理 label的结果
|
||
|
||
public double DistanceToImageCenter { get; set; } //计算矩形框到图像中心的距离
|
||
|
||
|
||
|
||
public ResultState FinalResult { get; set; }//模型推理+其他视觉、逻辑判断后 label结果
|
||
}
|
||
public class MLResult
|
||
{
|
||
public bool IsSuccess = false;
|
||
public string ResultMessage;
|
||
public Bitmap ResultMap;
|
||
public List<DetectionResultDetail> ResultDetails = new List<DetectionResultDetail>();
|
||
}
|
||
public class MLInit
|
||
{
|
||
public string ModelFile;
|
||
public string InferenceDevice;
|
||
|
||
|
||
public int InferenceWidth;
|
||
public int InferenceHeight;
|
||
|
||
public string InputNodeName;
|
||
|
||
|
||
public int SizeModel;
|
||
|
||
public bool bReverse;//尺寸测量正反面
|
||
//目标检测Gpu
|
||
public bool IsGPU;
|
||
public int GPUId;
|
||
public float Score_thre;
|
||
public MLInit(string modelFile, bool isGPU, int gpuId, float score_thre)
|
||
{
|
||
ModelFile = modelFile;
|
||
IsGPU = isGPU;
|
||
GPUId = gpuId;
|
||
Score_thre = score_thre;
|
||
}
|
||
|
||
public MLInit(string modelFile, string inputNodeName, string inferenceDevice, int inferenceWidth, int inferenceHeight)
|
||
{
|
||
ModelFile = modelFile;
|
||
InferenceDevice = inferenceDevice;
|
||
|
||
InferenceWidth = inferenceWidth;
|
||
InferenceHeight = inferenceHeight;
|
||
InputNodeName = inputNodeName;
|
||
|
||
|
||
}
|
||
}
|
||
public class DetectStationResult
|
||
{
|
||
public string Pid { get; set; }
|
||
|
||
public string TempPid { get; set; }
|
||
|
||
/// <summary>
|
||
/// 检测工位名称
|
||
/// </summary>
|
||
public string DetectName { get; set; }
|
||
|
||
|
||
/// <summary>
|
||
/// 深度学习 检测结果
|
||
/// </summary>
|
||
public List<DetectionResultDetail> DetectDetails = new List<DetectionResultDetail>();
|
||
|
||
|
||
/// <summary>
|
||
/// 工位检测结果
|
||
/// </summary>
|
||
public ResultState ResultState { get; set; } = ResultState.ResultTBD;
|
||
|
||
|
||
public double FinalResultfScore { get; set; } = 0.0;
|
||
|
||
|
||
public string ResultLabel { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||
|
||
public string ResultLabelCategoryId { get; set; } = "";// 多个ng时,根据label优先级,设定当前检测项的label
|
||
|
||
public int PreTreatState { get; set; }
|
||
public bool IsPreTreatDone { get; set; } = true;
|
||
|
||
public bool IsAfterTreatDone { get; set; } = true;
|
||
|
||
public bool IsMLDetectDone { get; set; } = true;
|
||
|
||
/// <summary>
|
||
/// 预处理阶段已经NG
|
||
/// </summary>
|
||
public bool IsPreTreatNG { get; set; } = false;
|
||
|
||
/// <summary>
|
||
/// 目标检测NG
|
||
/// </summary>
|
||
public bool IsObjectDetectNG { get; set; } = false;
|
||
|
||
public DateTime EndTime { get; set; }
|
||
|
||
public int StationDetectElapsed { get; set; }
|
||
public static string NormalizeAndClean(string input)
|
||
{
|
||
if (input == null) return null;
|
||
|
||
// Step 1: 标准化字符编码为 Form C (规范组合)
|
||
string normalizedString = input.Normalize(NormalizationForm.FormC);
|
||
|
||
// Step 2: 移除所有空白字符,包括制表符和换行符
|
||
string withoutWhitespace = Regex.Replace(normalizedString, @"\s+", "");
|
||
|
||
// Step 3: 移除控制字符 (Unicode 控制字符,范围 \u0000 - \u001F 和 \u007F)
|
||
string withoutControlChars = Regex.Replace(withoutWhitespace, @"[\u0000-\u001F\u007F]+", "");
|
||
|
||
// Step 4: 移除特殊的不可见字符(如零宽度空格等)
|
||
string cleanedString = Regex.Replace(withoutControlChars, @"[\u200B\u200C\u200D\uFEFF]+", "");
|
||
|
||
return cleanedString;
|
||
}
|
||
|
||
}
|
||
public class RelatedCamera
|
||
{
|
||
|
||
[Category("关联相机")]
|
||
[DisplayName("关联相机")]
|
||
[Description("关联相机描述")]
|
||
|
||
//[TypeConverter(typeof(CollectionCountConvert))]
|
||
public string CameraSourceId { get; set; } = "";
|
||
|
||
|
||
|
||
}
|
||
public class VisionEngine
|
||
{
|
||
[ReadOnly(true)]
|
||
public string Id { get; set; } = Guid.NewGuid().ToString();
|
||
|
||
|
||
[Category("检测配置")]
|
||
[DisplayName("检测配置名称")]
|
||
[Description("检测配置名称")]
|
||
public string Name { get; set; }
|
||
|
||
[Category("关联相机")]
|
||
[DisplayName("关联相机")]
|
||
[Description("关联相机描述")]
|
||
|
||
|
||
public string CameraSourceId { get; set; } = "";
|
||
|
||
|
||
[Category("关联相机集合")]
|
||
[DisplayName("关联相机集合")]
|
||
[Description("关联相机描述")]
|
||
//[TypeConverter(typeof(DeviceIdSelectorConverter<CameraBase>))]
|
||
|
||
public List<RelatedCamera> CameraCollects { get; set; } = new List<RelatedCamera>();
|
||
|
||
|
||
[Category("启用配置")]
|
||
[DisplayName("是否启用GPU检测")]
|
||
[Description("是否启用GPU检测")]
|
||
public bool IsEnableGPU { get; set; } = false;
|
||
|
||
[Category("2.中检测(深度学习)")]
|
||
[DisplayName("中检测-模型类型")]
|
||
[Description("模型类型:ImageClassification-图片分类;ObjectDetection:目标检测;Segmentation-图像分割")]
|
||
//[TypeConverter(typeof(EnumDescriptionConverter<MLModelType>))]
|
||
public MLModelType ModelType { get; set; } = MLModelType.ObjectDetection;
|
||
|
||
//[Category("2.中检测(深度学习)")]
|
||
//[DisplayName("中检测-GPU索引")]
|
||
//[Description("GPU索引")]
|
||
//public int GPUIndex { get; set; } = 0;
|
||
|
||
[Category("2.中检测(深度学习)")]
|
||
[DisplayName("中检测-模型文件路径")]
|
||
[Description("中处理 深度学习模型文件路径,路径中不可含有中文字符,一般情况可以只配置中检测模型,当需要先用预检测过滤一次时,请先配置好与预检测相关配置")]
|
||
|
||
public string ModelPath { get; set; }
|
||
|
||
public VisionEngine(string name, MLModelType modelType, string modelPath, bool isEnableGPU,string sCameraSourceId)
|
||
{
|
||
ModelPath = modelPath ?? string.Empty;
|
||
Name = name;
|
||
ModelType = modelType;
|
||
IsEnableGPU = isEnableGPU;
|
||
Id = Guid.NewGuid().ToString();
|
||
CameraSourceId = sCameraSourceId;
|
||
|
||
}
|
||
}
|
||
}
|