49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
Run a Flask REST API exposing one or more YOLOv5s models
|
||
|
"""
|
||
|
|
||
|
import argparse
|
||
|
import io
|
||
|
|
||
|
import torch
|
||
|
from flask import Flask, request
|
||
|
from PIL import Image
|
||
|
|
||
|
app = Flask(__name__)
|
||
|
models = {}
|
||
|
|
||
|
DETECTION_URL = "/v1/object-detection/<model>"
|
||
|
|
||
|
|
||
|
@app.route(DETECTION_URL, methods=["POST"])
|
||
|
def predict(model):
|
||
|
if request.method != "POST":
|
||
|
return
|
||
|
|
||
|
if request.files.get("image"):
|
||
|
# Method 1
|
||
|
# with request.files["image"] as f:
|
||
|
# im = Image.open(io.BytesIO(f.read()))
|
||
|
|
||
|
# Method 2
|
||
|
im_file = request.files["image"]
|
||
|
im_bytes = im_file.read()
|
||
|
im = Image.open(io.BytesIO(im_bytes))
|
||
|
|
||
|
if model in models:
|
||
|
results = models[model](im, size=640) # reduce size=320 for faster inference
|
||
|
return results.pandas().xyxy[0].to_json(orient="records")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
|
||
|
parser.add_argument("--port", default=5000, type=int, help="port number")
|
||
|
parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
for m in opt.model:
|
||
|
models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
|
||
|
|
||
|
app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat
|