101 lines
3.4 KiB
YAML
101 lines
3.4 KiB
YAML
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||
|
# Example usage: python train.py --data VOC.yaml
|
||
|
# parent
|
||
|
# ├── yolov5
|
||
|
# └── datasets
|
||
|
# └── VOC ← downloads here (2.8 GB)
|
||
|
|
||
|
|
||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||
|
path: ../datasets/VOC
|
||
|
train: # train images (relative to 'path') 16551 images
|
||
|
- images/train2012
|
||
|
- images/train2007
|
||
|
- images/val2012
|
||
|
- images/val2007
|
||
|
val: # val images (relative to 'path') 4952 images
|
||
|
- images/test2007
|
||
|
test: # test images (optional)
|
||
|
- images/test2007
|
||
|
|
||
|
# Classes
|
||
|
names:
|
||
|
0: aeroplane
|
||
|
1: bicycle
|
||
|
2: bird
|
||
|
3: boat
|
||
|
4: bottle
|
||
|
5: bus
|
||
|
6: car
|
||
|
7: cat
|
||
|
8: chair
|
||
|
9: cow
|
||
|
10: diningtable
|
||
|
11: dog
|
||
|
12: horse
|
||
|
13: motorbike
|
||
|
14: person
|
||
|
15: pottedplant
|
||
|
16: sheep
|
||
|
17: sofa
|
||
|
18: train
|
||
|
19: tvmonitor
|
||
|
|
||
|
|
||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||
|
download: |
|
||
|
import xml.etree.ElementTree as ET
|
||
|
|
||
|
from tqdm import tqdm
|
||
|
from utils.general import download, Path
|
||
|
|
||
|
|
||
|
def convert_label(path, lb_path, year, image_id):
|
||
|
def convert_box(size, box):
|
||
|
dw, dh = 1. / size[0], 1. / size[1]
|
||
|
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
||
|
return x * dw, y * dh, w * dw, h * dh
|
||
|
|
||
|
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
|
||
|
out_file = open(lb_path, 'w')
|
||
|
tree = ET.parse(in_file)
|
||
|
root = tree.getroot()
|
||
|
size = root.find('size')
|
||
|
w = int(size.find('width').text)
|
||
|
h = int(size.find('height').text)
|
||
|
|
||
|
names = list(yaml['names'].values()) # names list
|
||
|
for obj in root.iter('object'):
|
||
|
cls = obj.find('name').text
|
||
|
if cls in names and int(obj.find('difficult').text) != 1:
|
||
|
xmlbox = obj.find('bndbox')
|
||
|
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
||
|
cls_id = names.index(cls) # class id
|
||
|
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
||
|
|
||
|
|
||
|
# Download
|
||
|
dir = Path(yaml['path']) # dataset root dir
|
||
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
||
|
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
||
|
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
||
|
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
||
|
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
|
||
|
|
||
|
# Convert
|
||
|
path = dir / 'images/VOCdevkit'
|
||
|
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
||
|
imgs_path = dir / 'images' / f'{image_set}{year}'
|
||
|
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
||
|
imgs_path.mkdir(exist_ok=True, parents=True)
|
||
|
lbs_path.mkdir(exist_ok=True, parents=True)
|
||
|
|
||
|
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
|
||
|
image_ids = f.read().strip().split()
|
||
|
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
||
|
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
||
|
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
||
|
f.rename(imgs_path / f.name) # move image
|
||
|
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|