780 lines
37 KiB
Python
780 lines
37 KiB
Python
|
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||
|
"""
|
||
|
Common modules
|
||
|
"""
|
||
|
|
||
|
import json
|
||
|
import math
|
||
|
import platform
|
||
|
import warnings
|
||
|
from collections import OrderedDict, namedtuple
|
||
|
from copy import copy
|
||
|
from pathlib import Path
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import requests
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from PIL import Image
|
||
|
from torch.cuda import amp
|
||
|
|
||
|
from app.yolov5.utils.dataloaders import exif_transpose, letterbox
|
||
|
from app.yolov5.utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
|
||
|
increment_path, make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh,
|
||
|
yaml_load)
|
||
|
from app.yolov5.utils.plots import Annotator, colors, save_one_box
|
||
|
from app.yolov5.utils.torch_utils import copy_attr, smart_inference_mode
|
||
|
|
||
|
|
||
|
def autopad(k, p=None): # kernel, padding
|
||
|
# Pad to 'same'
|
||
|
if p is None:
|
||
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||
|
return p
|
||
|
|
||
|
|
||
|
class Conv(nn.Module):
|
||
|
# Standard convolution
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||
|
self.bn = nn.BatchNorm2d(c2)
|
||
|
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.act(self.bn(self.conv(x)))
|
||
|
|
||
|
def forward_fuse(self, x):
|
||
|
return self.act(self.conv(x))
|
||
|
|
||
|
|
||
|
class DWConv(Conv):
|
||
|
# Depth-wise convolution class
|
||
|
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||
|
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||
|
|
||
|
|
||
|
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||
|
# Depth-wise transpose convolution class
|
||
|
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||
|
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||
|
|
||
|
|
||
|
class TransformerLayer(nn.Module):
|
||
|
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
||
|
def __init__(self, c, num_heads):
|
||
|
super().__init__()
|
||
|
self.q = nn.Linear(c, c, bias=False)
|
||
|
self.k = nn.Linear(c, c, bias=False)
|
||
|
self.v = nn.Linear(c, c, bias=False)
|
||
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||
|
self.fc1 = nn.Linear(c, c, bias=False)
|
||
|
self.fc2 = nn.Linear(c, c, bias=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||
|
x = self.fc2(self.fc1(x)) + x
|
||
|
return x
|
||
|
|
||
|
|
||
|
class TransformerBlock(nn.Module):
|
||
|
# Vision Transformer https://arxiv.org/abs/2010.11929
|
||
|
def __init__(self, c1, c2, num_heads, num_layers):
|
||
|
super().__init__()
|
||
|
self.conv = None
|
||
|
if c1 != c2:
|
||
|
self.conv = Conv(c1, c2)
|
||
|
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||
|
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||
|
self.c2 = c2
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.conv is not None:
|
||
|
x = self.conv(x)
|
||
|
b, _, w, h = x.shape
|
||
|
p = x.flatten(2).permute(2, 0, 1)
|
||
|
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||
|
|
||
|
|
||
|
class Bottleneck(nn.Module):
|
||
|
# Standard bottleneck
|
||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||
|
self.add = shortcut and c1 == c2
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||
|
|
||
|
|
||
|
class BottleneckCSP(nn.Module):
|
||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||
|
self.act = nn.SiLU()
|
||
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||
|
|
||
|
def forward(self, x):
|
||
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||
|
y2 = self.cv2(x)
|
||
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||
|
|
||
|
|
||
|
class CrossConv(nn.Module):
|
||
|
# Cross Convolution Downsample
|
||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||
|
self.add = shortcut and c1 == c2
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||
|
|
||
|
|
||
|
class C3(nn.Module):
|
||
|
# CSP Bottleneck with 3 convolutions
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||
|
super().__init__()
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||
|
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||
|
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||
|
|
||
|
|
||
|
class C3x(C3):
|
||
|
# C3 module with cross-convolutions
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||
|
c_ = int(c2 * e)
|
||
|
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
||
|
|
||
|
|
||
|
class C3TR(C3):
|
||
|
# C3 module with TransformerBlock()
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||
|
c_ = int(c2 * e)
|
||
|
self.m = TransformerBlock(c_, c_, 4, n)
|
||
|
|
||
|
|
||
|
class C3SPP(C3):
|
||
|
# C3 module with SPP()
|
||
|
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||
|
c_ = int(c2 * e)
|
||
|
self.m = SPP(c_, c_, k)
|
||
|
|
||
|
|
||
|
class C3Ghost(C3):
|
||
|
# C3 module with GhostBottleneck()
|
||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||
|
c_ = int(c2 * e) # hidden channels
|
||
|
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
||
|
|
||
|
|
||
|
class SPP(nn.Module):
|
||
|
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
||
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||
|
super().__init__()
|
||
|
c_ = c1 // 2 # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.cv1(x)
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
||
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||
|
|
||
|
|
||
|
class SPPF(nn.Module):
|
||
|
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
||
|
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||
|
super().__init__()
|
||
|
c_ = c1 // 2 # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||
|
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
||
|
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.cv1(x)
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
||
|
y1 = self.m(x)
|
||
|
y2 = self.m(y1)
|
||
|
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
||
|
|
||
|
|
||
|
class Focus(nn.Module):
|
||
|
# Focus wh information into c-space
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||
|
# self.contract = Contract(gain=2)
|
||
|
|
||
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||
|
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||
|
# return self.conv(self.contract(x))
|
||
|
|
||
|
|
||
|
class GhostConv(nn.Module):
|
||
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||
|
super().__init__()
|
||
|
c_ = c2 // 2 # hidden channels
|
||
|
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
||
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.cv1(x)
|
||
|
return torch.cat((y, self.cv2(y)), 1)
|
||
|
|
||
|
|
||
|
class GhostBottleneck(nn.Module):
|
||
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||
|
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||
|
super().__init__()
|
||
|
c_ = c2 // 2
|
||
|
self.conv = nn.Sequential(
|
||
|
GhostConv(c1, c_, 1, 1), # pw
|
||
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
||
|
act=False)) if s == 2 else nn.Identity()
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.conv(x) + self.shortcut(x)
|
||
|
|
||
|
|
||
|
class Contract(nn.Module):
|
||
|
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
||
|
def __init__(self, gain=2):
|
||
|
super().__init__()
|
||
|
self.gain = gain
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
||
|
s = self.gain
|
||
|
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
||
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
||
|
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
||
|
|
||
|
|
||
|
class Expand(nn.Module):
|
||
|
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
||
|
def __init__(self, gain=2):
|
||
|
super().__init__()
|
||
|
self.gain = gain
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
||
|
s = self.gain
|
||
|
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
||
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
||
|
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
||
|
|
||
|
|
||
|
class Concat(nn.Module):
|
||
|
# Concatenate a list of tensors along dimension
|
||
|
def __init__(self, dimension=1):
|
||
|
super().__init__()
|
||
|
self.d = dimension
|
||
|
|
||
|
def forward(self, x):
|
||
|
return torch.cat(x, self.d)
|
||
|
|
||
|
|
||
|
class DetectMultiBackend(nn.Module):
|
||
|
# YOLOv5 MultiBackend class for python inference on various backends
|
||
|
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||
|
# Usage:
|
||
|
# PyTorch: weights = *.pt
|
||
|
# TorchScript: *.torchscript
|
||
|
# ONNX Runtime: *.onnx
|
||
|
# ONNX OpenCV DNN: *.onnx with --dnn
|
||
|
# OpenVINO: *.xml
|
||
|
# CoreML: *.mlmodel
|
||
|
# TensorRT: *.engine
|
||
|
# TensorFlow SavedModel: *_saved_model
|
||
|
# TensorFlow GraphDef: *.pb
|
||
|
# TensorFlow Lite: *.tflite
|
||
|
# TensorFlow Edge TPU: *_edgetpu.tflite
|
||
|
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
||
|
|
||
|
super().__init__()
|
||
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
||
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self._model_type(w) # get backend
|
||
|
w = attempt_download(w) # download if not local
|
||
|
fp16 &= pt or jit or onnx or engine # FP16
|
||
|
stride = 32 # default stride
|
||
|
|
||
|
if pt: # PyTorch
|
||
|
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
||
|
stride = max(int(model.stride.max()), 32) # model stride
|
||
|
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||
|
model.half() if fp16 else model.float()
|
||
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||
|
elif jit: # TorchScript
|
||
|
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||
|
extra_files = {'config.txt': ''} # model metadata
|
||
|
model = torch.jit.load(w, _extra_files=extra_files)
|
||
|
model.half() if fp16 else model.float()
|
||
|
if extra_files['config.txt']: # load metadata dict
|
||
|
d = json.loads(extra_files['config.txt'],
|
||
|
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
||
|
for k, v in d.items()})
|
||
|
stride, names = int(d['stride']), d['names']
|
||
|
elif dnn: # ONNX OpenCV DNN
|
||
|
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
||
|
check_requirements(('opencv-python>=4.5.4',))
|
||
|
net = cv2.dnn.readNetFromONNX(w)
|
||
|
elif onnx: # ONNX Runtime
|
||
|
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
||
|
cuda = torch.cuda.is_available() and device.type != 'cpu'
|
||
|
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
||
|
import onnxruntime
|
||
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
||
|
output_names = [x.name for x in session.get_outputs()]
|
||
|
meta = session.get_modelmeta().custom_metadata_map # metadata
|
||
|
if 'stride' in meta:
|
||
|
stride, names = int(meta['stride']), eval(meta['names'])
|
||
|
elif xml: # OpenVINO
|
||
|
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||
|
check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||
|
from openvino.runtime import Core, Layout, get_batch
|
||
|
ie = Core()
|
||
|
if not Path(w).is_file(): # if not *.xml
|
||
|
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
||
|
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
||
|
if network.get_parameters()[0].get_layout().empty:
|
||
|
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
||
|
batch_dim = get_batch(network)
|
||
|
if batch_dim.is_static:
|
||
|
batch_size = batch_dim.get_length()
|
||
|
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
||
|
output_layer = next(iter(executable_network.outputs))
|
||
|
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
||
|
elif engine: # TensorRT
|
||
|
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||
|
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
||
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||
|
if device.type == 'cpu':
|
||
|
device = torch.device('cuda:0')
|
||
|
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||
|
logger = trt.Logger(trt.Logger.INFO)
|
||
|
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||
|
model = runtime.deserialize_cuda_engine(f.read())
|
||
|
context = model.create_execution_context()
|
||
|
bindings = OrderedDict()
|
||
|
fp16 = False # default updated below
|
||
|
dynamic = False
|
||
|
for index in range(model.num_bindings):
|
||
|
name = model.get_binding_name(index)
|
||
|
dtype = trt.nptype(model.get_binding_dtype(index))
|
||
|
if model.binding_is_input(index):
|
||
|
if -1 in tuple(model.get_binding_shape(index)): # dynamic
|
||
|
dynamic = True
|
||
|
context.set_binding_shape(index, tuple(model.get_profile_shape(0, index)[2]))
|
||
|
if dtype == np.float16:
|
||
|
fp16 = True
|
||
|
shape = tuple(context.get_binding_shape(index))
|
||
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||
|
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||
|
elif coreml: # CoreML
|
||
|
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||
|
import coremltools as ct
|
||
|
model = ct.models.MLModel(w)
|
||
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||
|
if saved_model: # SavedModel
|
||
|
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
||
|
import tensorflow as tf
|
||
|
keras = False # assume TF1 saved_model
|
||
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||
|
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||
|
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||
|
import tensorflow as tf
|
||
|
|
||
|
def wrap_frozen_graph(gd, inputs, outputs):
|
||
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||
|
ge = x.graph.as_graph_element
|
||
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||
|
|
||
|
gd = tf.Graph().as_graph_def() # graph_def
|
||
|
with open(w, 'rb') as f:
|
||
|
gd.ParseFromString(f.read())
|
||
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
|
||
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||
|
except ImportError:
|
||
|
import tensorflow as tf
|
||
|
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
||
|
if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
||
|
delegate = {
|
||
|
'Linux': 'libedgetpu.so.1',
|
||
|
'Darwin': 'libedgetpu.1.dylib',
|
||
|
'Windows': 'edgetpu.dll'}[platform.system()]
|
||
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||
|
else: # Lite
|
||
|
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
||
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
||
|
interpreter.allocate_tensors() # allocate
|
||
|
input_details = interpreter.get_input_details() # inputs
|
||
|
output_details = interpreter.get_output_details() # outputs
|
||
|
elif tfjs:
|
||
|
raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
|
||
|
else:
|
||
|
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
||
|
|
||
|
# class names
|
||
|
if 'names' not in locals():
|
||
|
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
||
|
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
||
|
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
||
|
|
||
|
self.__dict__.update(locals()) # assign all variables to self
|
||
|
|
||
|
def forward(self, im, augment=False, visualize=False):
|
||
|
# YOLOv5 MultiBackend inference
|
||
|
b, ch, h, w = im.shape # batch, channel, height, width
|
||
|
if self.fp16 and im.dtype != torch.float16:
|
||
|
im = im.half() # to FP16
|
||
|
|
||
|
if self.pt: # PyTorch
|
||
|
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
||
|
elif self.jit: # TorchScript
|
||
|
y = self.model(im)
|
||
|
elif self.dnn: # ONNX OpenCV DNN
|
||
|
im = im.cpu().numpy() # torch to numpy
|
||
|
self.net.setInput(im)
|
||
|
y = self.net.forward()
|
||
|
elif self.onnx: # ONNX Runtime
|
||
|
im = im.cpu().numpy() # torch to numpy
|
||
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||
|
elif self.xml: # OpenVINO
|
||
|
im = im.cpu().numpy() # FP32
|
||
|
y = self.executable_network([im])[self.output_layer]
|
||
|
elif self.engine: # TensorRT
|
||
|
if self.dynamic and im.shape != self.bindings['images'].shape:
|
||
|
i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output'))
|
||
|
self.context.set_binding_shape(i_in, im.shape) # reshape if dynamic
|
||
|
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
||
|
self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
|
||
|
s = self.bindings['images'].shape
|
||
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||
|
self.binding_addrs['images'] = int(im.data_ptr())
|
||
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
||
|
y = self.bindings['output'].data
|
||
|
elif self.coreml: # CoreML
|
||
|
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||
|
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
||
|
# im = im.resize((192, 320), Image.ANTIALIAS)
|
||
|
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
||
|
if 'confidence' in y:
|
||
|
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||
|
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||
|
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||
|
else:
|
||
|
k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
|
||
|
y = y[k] # output
|
||
|
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||
|
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||
|
if self.saved_model: # SavedModel
|
||
|
y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
|
||
|
elif self.pb: # GraphDef
|
||
|
y = self.frozen_func(x=self.tf.constant(im)).numpy()
|
||
|
else: # Lite or Edge TPU
|
||
|
input, output = self.input_details[0], self.output_details[0]
|
||
|
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
||
|
if int8:
|
||
|
scale, zero_point = input['quantization']
|
||
|
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
||
|
self.interpreter.set_tensor(input['index'], im)
|
||
|
self.interpreter.invoke()
|
||
|
y = self.interpreter.get_tensor(output['index'])
|
||
|
if int8:
|
||
|
scale, zero_point = output['quantization']
|
||
|
y = (y.astype(np.float32) - zero_point) * scale # re-scale
|
||
|
y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||
|
|
||
|
if isinstance(y, (list, tuple)):
|
||
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||
|
else:
|
||
|
return self.from_numpy(y)
|
||
|
|
||
|
def from_numpy(self, x):
|
||
|
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||
|
|
||
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||
|
# Warmup model by running inference once
|
||
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
|
||
|
if any(warmup_types) and self.device.type != 'cpu':
|
||
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||
|
for _ in range(2 if self.jit else 1): #
|
||
|
self.forward(im) # warmup
|
||
|
|
||
|
@staticmethod
|
||
|
def _model_type(p='path/to/model.pt'):
|
||
|
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||
|
from export import export_formats
|
||
|
suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
|
||
|
check_suffix(p, suffixes) # checks
|
||
|
p = Path(p).name # eliminate trailing separators
|
||
|
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
|
||
|
xml |= xml2 # *_openvino_model or *.xml
|
||
|
tflite &= not edgetpu # *.tflite
|
||
|
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
||
|
|
||
|
@staticmethod
|
||
|
def _load_metadata(f=Path('path/to/meta.yaml')):
|
||
|
# Load metadata from meta.yaml if it exists
|
||
|
if f.exists():
|
||
|
d = yaml_load(f)
|
||
|
return d['stride'], d['names'] # assign stride, names
|
||
|
return None, None
|
||
|
|
||
|
|
||
|
class AutoShape(nn.Module):
|
||
|
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||
|
conf = 0.25 # NMS confidence threshold
|
||
|
iou = 0.45 # NMS IoU threshold
|
||
|
agnostic = False # NMS class-agnostic
|
||
|
multi_label = False # NMS multiple labels per box
|
||
|
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
||
|
max_det = 1000 # maximum number of detections per image
|
||
|
amp = False # Automatic Mixed Precision (AMP) inference
|
||
|
|
||
|
def __init__(self, model, verbose=True):
|
||
|
super().__init__()
|
||
|
if verbose:
|
||
|
LOGGER.info('Adding AutoShape... ')
|
||
|
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
||
|
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
||
|
self.pt = not self.dmb or model.pt # PyTorch model
|
||
|
self.model = model.eval()
|
||
|
if self.pt:
|
||
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||
|
m.inplace = False # Detect.inplace=False for safe multithread inference
|
||
|
|
||
|
def _apply(self, fn):
|
||
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
||
|
self = super()._apply(fn)
|
||
|
if self.pt:
|
||
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
||
|
m.stride = fn(m.stride)
|
||
|
m.grid = list(map(fn, m.grid))
|
||
|
if isinstance(m.anchor_grid, list):
|
||
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
||
|
return self
|
||
|
|
||
|
@smart_inference_mode()
|
||
|
def forward(self, ims, size=640, augment=False, profile=False):
|
||
|
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
||
|
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
||
|
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
||
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
||
|
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
||
|
# numpy: = np.zeros((640,1280,3)) # HWC
|
||
|
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
||
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||
|
|
||
|
dt = (Profile(), Profile(), Profile())
|
||
|
with dt[0]:
|
||
|
if isinstance(size, int): # expand
|
||
|
size = (size, size)
|
||
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
||
|
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
||
|
if isinstance(ims, torch.Tensor): # torch
|
||
|
with amp.autocast(autocast):
|
||
|
return self.model(ims.to(p.device).type_as(p), augment, profile) # inference
|
||
|
|
||
|
# Pre-process
|
||
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
||
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||
|
for i, im in enumerate(ims):
|
||
|
f = f'image{i}' # filename
|
||
|
if isinstance(im, (str, Path)): # filename or uri
|
||
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
||
|
im = np.asarray(exif_transpose(im))
|
||
|
elif isinstance(im, Image.Image): # PIL Image
|
||
|
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
||
|
files.append(Path(f).with_suffix('.jpg').name)
|
||
|
if im.shape[0] < 5: # image in CHW
|
||
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
||
|
s = im.shape[:2] # HWC
|
||
|
shape0.append(s) # image shape
|
||
|
g = max(size) / max(s) # gain
|
||
|
shape1.append([y * g for y in s])
|
||
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
||
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
|
||
|
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
||
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
||
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
||
|
|
||
|
with amp.autocast(autocast):
|
||
|
# Inference
|
||
|
with dt[1]:
|
||
|
y = self.model(x, augment, profile) # forward
|
||
|
|
||
|
# Post-process
|
||
|
with dt[2]:
|
||
|
y = non_max_suppression(y if self.dmb else y[0],
|
||
|
self.conf,
|
||
|
self.iou,
|
||
|
self.classes,
|
||
|
self.agnostic,
|
||
|
self.multi_label,
|
||
|
max_det=self.max_det) # NMS
|
||
|
for i in range(n):
|
||
|
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||
|
|
||
|
return Detections(ims, y, files, dt, self.names, x.shape)
|
||
|
|
||
|
|
||
|
class Detections:
|
||
|
# YOLOv5 detections class for inference results
|
||
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
||
|
super().__init__()
|
||
|
d = pred[0].device # device
|
||
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
||
|
self.ims = ims # list of images as numpy arrays
|
||
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||
|
self.names = names # class names
|
||
|
self.files = files # image filenames
|
||
|
self.times = times # profiling times
|
||
|
self.xyxy = pred # xyxy pixels
|
||
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||
|
self.n = len(self.pred) # number of images (batch size)
|
||
|
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
||
|
self.s = shape # inference BCHW shape
|
||
|
|
||
|
def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
||
|
crops = []
|
||
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
||
|
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
||
|
if pred.shape[0]:
|
||
|
for c in pred[:, -1].unique():
|
||
|
n = (pred[:, -1] == c).sum() # detections per class
|
||
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||
|
if show or save or render or crop:
|
||
|
annotator = Annotator(im, example=str(self.names))
|
||
|
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
||
|
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||
|
if crop:
|
||
|
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
||
|
crops.append({
|
||
|
'box': box,
|
||
|
'conf': conf,
|
||
|
'cls': cls,
|
||
|
'label': label,
|
||
|
'im': save_one_box(box, im, file=file, save=save)})
|
||
|
else: # all others
|
||
|
annotator.box_label(box, label if labels else '', color=colors(cls))
|
||
|
im = annotator.im
|
||
|
else:
|
||
|
s += '(no detections)'
|
||
|
|
||
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
||
|
if pprint:
|
||
|
print(s.rstrip(', '))
|
||
|
if show:
|
||
|
im.show(self.files[i]) # show
|
||
|
if save:
|
||
|
f = self.files[i]
|
||
|
im.save(save_dir / f) # save
|
||
|
if i == self.n - 1:
|
||
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
||
|
if render:
|
||
|
self.ims[i] = np.asarray(im)
|
||
|
if crop:
|
||
|
if save:
|
||
|
LOGGER.info(f'Saved results to {save_dir}\n')
|
||
|
return crops
|
||
|
|
||
|
def print(self):
|
||
|
self.display(pprint=True) # print results
|
||
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
|
||
|
|
||
|
def show(self, labels=True):
|
||
|
self.display(show=True, labels=labels) # show results
|
||
|
|
||
|
def save(self, labels=True, save_dir='runs/detect/exp'):
|
||
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
||
|
self.display(save=True, labels=labels, save_dir=save_dir) # save results
|
||
|
|
||
|
def crop(self, save=True, save_dir='runs/detect/exp'):
|
||
|
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
||
|
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
||
|
|
||
|
def render(self, labels=True):
|
||
|
self.display(render=True, labels=labels) # render results
|
||
|
return self.ims
|
||
|
|
||
|
def pandas(self):
|
||
|
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
||
|
new = copy(self) # return copy
|
||
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
||
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
||
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
||
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
||
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
||
|
return new
|
||
|
|
||
|
def tolist(self):
|
||
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||
|
r = range(self.n) # iterable
|
||
|
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
||
|
# for d in x:
|
||
|
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||
|
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||
|
return x
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.n # override len(results)
|
||
|
|
||
|
def __str__(self):
|
||
|
self.print() # override print(results)
|
||
|
return ''
|
||
|
|
||
|
|
||
|
class Classify(nn.Module):
|
||
|
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||
|
super().__init__()
|
||
|
c_ = 1280 # efficientnet_b0 size
|
||
|
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
||
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
||
|
self.drop = nn.Dropout(p=0.0, inplace=True)
|
||
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
if isinstance(x, list):
|
||
|
x = torch.cat(x, 1)
|
||
|
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|