中断训练

This commit is contained in:
wudong 2022-11-29 16:14:09 +08:00
parent c3a6574372
commit 0bafaf6e1d
13 changed files with 1418 additions and 956 deletions

View File

@ -7,30 +7,38 @@
@Desc @Desc
""" """
import json import multiprocessing
from app.utils.redis_config import redis_client
def _init(): # 初始化 def _init(): # 初始化
dict = {} # 中断标志
redis_client.__setattr__("_global_dict", json.dumps(dict)) global _global_dict
_global_dict = {}
# # ws列表存储
# global _active_connections
# _active_connections = multiprocessing.Manager().list()
# # ws字典存储
# global _active_connections_dist
# _active_connections_dist = multiprocessing.Manager().dict()
# def get_active_connections():
# return _active_connections
# def get_active_connections_dist():
# return _active_connections_dist
def set_value(key, value): def set_value(key, value):
# 定义一个全局变量 # 定义一个全局变量
dict = redis_client.get_redis().get("_global_dict") _global_dict[key] = value
if dict is None:
dict = {}
dict[key] = value
# redis_client.get_redis().set("_global_dict", json.dumps(dict))
redis_client.__setattr__("_global_dict", json.dumps(dict))
def get_value(key): def get_value(key):
# 获得一个全局变量,不存在则提示读取对应变量失败 # 获得一个全局变量,不存在则提示读取对应变量失败
try: try:
return redis_client.get_redis().get("_global_dict")[key] return _global_dict[key]
except Exception as e: except:
print(e)
print('读取' + key + '失败\r\n') print('读取' + key + '失败\r\n')

View File

@ -1,9 +1,9 @@
path: null path: null
train: /mnt/sdc/aicheck/IntelligentizeAI/data_set/193120735164768256/trained/images/train/ train: /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/190857268466688000/trained/images/train/
val: /mnt/sdc/aicheck/IntelligentizeAI/data_set/193120735164768256/trained/images/val/ val: /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/190857268466688000/trained/images/val/
test: null test: null
names: names:
0: hole 0: hole
1: '456' 1: '456'
2: dog 2: zui
3: cat 3: mianbang

503
nohup.out
View File

@ -1,51 +1,478 @@
nohup: ignoring input nohup: ignoring input
2022-11-24 08:58:34,262 INFO sqlalchemy.engine.Engine select pg_catalog.version() 2022-11-29 08:44:22,208 INFO sqlalchemy.engine.Engine select pg_catalog.version()
2022-11-24 08:58:34,262 INFO sqlalchemy.engine.Engine [raw sql] {} 2022-11-29 08:44:22,209 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-24 08:58:34,267 INFO sqlalchemy.engine.Engine select current_schema() 2022-11-29 08:44:22,214 INFO sqlalchemy.engine.Engine select current_schema()
2022-11-24 08:58:34,267 INFO sqlalchemy.engine.Engine [raw sql] {} 2022-11-29 08:44:22,214 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-24 08:58:34,272 INFO sqlalchemy.engine.Engine show standard_conforming_strings 2022-11-29 08:44:22,219 INFO sqlalchemy.engine.Engine show standard_conforming_strings
2022-11-24 08:58:34,272 INFO sqlalchemy.engine.Engine [raw sql] {} 2022-11-29 08:44:22,219 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-24 08:58:34,277 INFO sqlalchemy.engine.Engine BEGIN (implicit) 2022-11-29 08:44:22,225 INFO sqlalchemy.engine.Engine BEGIN (implicit)
2022-11-24 08:58:34,277 INFO sqlalchemy.engine.Engine COMMIT 2022-11-29 08:44:22,225 INFO sqlalchemy.engine.Engine COMMIT
export: data=app/yolov5/data/coco128.yaml, weights=/mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.pt, imgsz=[640, 640], batch_size=1, device=0, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=11, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx'] detect_server: id=195095688265211904_17_detect, weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//核酸检测_190857268466688000_R-ODY_17_640.pt, source=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera, output=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/results, data=app/yolov5/data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=True, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=app/yolov5/runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB)
2022-11-29 08:44:36.902619: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-29 08:44:37.033367: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2022-11-29 08:44:37.070603: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2022-11-29 08:44:37.607302: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/cv2/../../lib64::/usr/local/cuda/lib64
2022-11-29 08:44:37.607416: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/cv2/../../lib64::/usr/local/cuda/lib64
2022-11-29 08:44:37.607434: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
Fusing layers...
192.168.0.20 - - [2022-11-29 08:44:42] "GET /api/obtain_detect_param HTTP/1.1" 200 1110 0.000672
192.168.0.20 - - [2022-11-29 08:44:42] "GET /api/start_detect_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fcamera%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu5165%5Cu56fe%5Cu50cf%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2FJPEGImages%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22outputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fresults%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu51fa%5Cu7ed3%5Cu679c%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2Fres%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22modPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2F%5Cu6838%5Cu9178%5Cu68c0%5Cu6d4b_190857268466688000_R-ODY_17_640.pt%22%2C+%22description%22%3A+%22%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%220%22%2C+%22description%22%3A+%22%5Cu63a8%5Cu7406%5Cu6838%22%2C+%22default%22%3A+%22cpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=195095688265211904_17_detect HTTP/1.1" 200 161 0.002945
detect_server: id=195095688265211904_17_detect, weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//核酸检测_190857268466688000_R-ODY_17_640.pt, source=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera, output=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/results, data=app/yolov5/data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=True, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=app/yolov5/runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB)
Fusing layers...
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
------进入websocket
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
image 1/1 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera/微信截图_20221129084118.png: 640x512 1 zui, 1 mianbang, 23.9ms
Speed: 0.4ms pre-process, 23.9ms inference, 1.5ms NMS per image at shape (1, 3, 640, 640)
image 1/1 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera/微信截图_20221129084118.png: 640x512 1 zui, 1 mianbang, 21.2ms
Speed: 0.4ms pre-process, 21.2ms inference, 1.1ms NMS per image at shape (1, 3, 640, 640)
192.168.0.20 - - [2022-11-29 08:46:07] "GET /api/obtain_detect_param HTTP/1.1" 200 1110 0.000634
192.168.0.20 - - [2022-11-29 08:46:07] "GET /api/start_detect_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fcamera%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu5165%5Cu56fe%5Cu50cf%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2FJPEGImages%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22outputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fresults%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu51fa%5Cu7ed3%5Cu679c%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2Fres%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22modPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2F%5Cu6838%5Cu9178%5Cu68c0%5Cu6d4b_190857268466688000_R-ODY_17_640.pt%22%2C+%22description%22%3A+%22%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%220%22%2C+%22description%22%3A+%22%5Cu63a8%5Cu7406%5Cu6838%22%2C+%22default%22%3A+%22cpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=195095688265211904_17_detect HTTP/1.1" 200 161 0.002091
detect_server: id=195095688265211904_17_detect, weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//核酸检测_190857268466688000_R-ODY_17_640.pt, source=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera, output=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/results, data=app/yolov5/data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=True, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=app/yolov5/runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB)
Fusing layers...
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
image 1/1 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera/微信截图_20221129084118.png: 640x512 1 zui, 1 mianbang, 12.3ms
Speed: 0.4ms pre-process, 12.3ms inference, 0.8ms NMS per image at shape (1, 3, 640, 640)
------进入websocket
192.168.0.20 - - [2022-11-29 08:46:19] "GET /api/obtain_detect_param HTTP/1.1" 200 1110 0.000607
192.168.0.20 - - [2022-11-29 08:46:19] "GET /api/start_detect_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fcamera%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu5165%5Cu56fe%5Cu50cf%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2FJPEGImages%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22outputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F195095688265211904%2Fresults%22%2C+%22description%22%3A+%22%5Cu8f93%5Cu51fa%5Cu7ed3%5Cu679c%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2FM006B_waibi%2Fres%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22modPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2F%5Cu6838%5Cu9178%5Cu68c0%5Cu6d4b_190857268466688000_R-ODY_17_640.pt%22%2C+%22description%22%3A+%22%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%220%22%2C+%22description%22%3A+%22%5Cu63a8%5Cu7406%5Cu6838%22%2C+%22default%22%3A+%22cpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=195095688265211904_17_detect HTTP/1.1" 200 161 0.002050
detect_server: id=195095688265211904_17_detect, weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//核酸检测_190857268466688000_R-ODY_17_640.pt, source=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera, output=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/results, data=app/yolov5/data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=0, view_img=False, save_txt=True, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=app/yolov5/runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB)
Fusing layers...
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
image 1/1 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/195095688265211904/camera/微信截图_20221129084118.png: 640x512 1 zui, 1 mianbang, 12.3ms
Speed: 0.4ms pre-process, 12.3ms inference, 0.8ms NMS per image at shape (1, 3, 640, 640)
------进入websocket
192.168.0.20 - - [2022-11-29 09:46:07] "GET /api/obtain_train_param HTTP/1.1" 200 1936 0.003772
------进入websocket
------进入websocket
192.168.0.20 - - [2022-11-29 09:52:50] "GET /api/obtain_train_param HTTP/1.1" 200 1936 0.000666
------进入websocket
------进入websocket
------进入websocket
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
-----------回调消息成功------------
192.168.0.20 - - [2022-11-29 10:06:37] "GET /api/obtain_train_param HTTP/1.1" 200 1936 0.000656
------进入websocket
存储ws连接对象
requirements: /mnt/sdc/algorithm/R-ODY/app/yolov5/requirements.txt not found, check failed.
True
requirements: /mnt/sdc/algorithm/R-ODY/app/yolov5/requirements.txt not found, check failed.
True
存储ws连接对象
图片总数量: 1
处理成功数量: 1
处理失败数量: 0
图片总数量: 1
处理成功数量: 1
处理失败数量: 0
requirements: /mnt/sdc/algorithm/R-ODY/app/yolov5/requirements.txt not found, check failed.
True
图片总数量: 1
处理成功数量: 1
处理失败数量: 0
存储ws连接对象
requirements: /mnt/sdc/algorithm/R-ODY/app/yolov5/requirements.txt not found, check failed.
True
图片总数量: 1
处理成功数量: 1
处理失败数量: 0
存储ws连接对象
存储ws连接对象
存储ws连接对象
存储ws连接对象
存储ws连接对象
存储ws连接对象
None
None
None
None
None
None
None
None
None
存储ws连接对象
192.168.0.20 - - [2022-11-29 10:06:49] "GET /api/start_train_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22epochnum%22%2C+%22value%22%3A+10%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu8f6e%5Cu6b21%22%2C+%22default%22%3A+100%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22batch_size%22%2C+%22value%22%3A+4%2C+%22description%22%3A+%22%5Cu6279%5Cu6b21%5Cu56fe%5Cu50cf%5Cu6570%5Cu91cf%22%2C+%22default%22%3A+1%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22img_size%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22cuda%3A0%22%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu6838%5Cu5fc3%22%2C+%22default%22%3A+%22cuda%3A0%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%5B%22cuda%3A0%22%2C+%22cuda%3A1%22%5D%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+4%2C+%22name%22%3A+%22saveModDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F1128test_194741569180540928_R-ODY_19.pt%22%2C+%22description%22%3A+%22%5Cu4fdd%5Cu5b58%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+5%2C+%22name%22%3A+%22resumeModPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2Fyolov5s.pt%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+6%2C+%22name%22%3A+%22resumeMod%22%2C+%22value%22%3A+%22%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu6a21%5Cu578b%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+7%2C+%22name%22%3A+%22CLASS_NAMES%22%2C+%22value%22%3A+%5B%22hole%22%2C+%22456%22%2C+%22aeroplane%22%2C+%22tvmonitor%22%2C+%22train%22%2C+%22boat%22%2C+%22dog%22%2C+%22chair%22%2C+%22bird%22%2C+%22bicycle%22%2C+%22person%22%2C+%22bottle%22%2C+%22sheep%22%2C+%22cat%22%5D%2C+%22description%22%3A+%22%5Cu7c7b%5Cu522b%5Cu540d%5Cu79f0%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22L%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+8%2C+%22name%22%3A+%22DatasetDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F194741569180540928%2Fori%22%2C+%22description%22%3A+%22%5Cu6570%5Cu636e%5Cu96c6%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2Ftest%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=194741569180540928_19_train HTTP/1.1" 200 161 0.057693
删除图片数据
删除json数据
train_server: weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt, savemodel=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/1128test_194741569180540928_R-ODY_19_640.pt, cfg=, data=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/coco128.yaml, hyp=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/hyps/hyp.scratch-low.yaml, epochs=10, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=cuda:0, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
TensorBoard: Start with 'tensorboard --logdir /mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=14
from n params module arguments
0 -1 1 3520 app.yolov5.models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 app.yolov5.models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 app.yolov5.models.common.C3 [64, 64, 1]
3 -1 1 73984 app.yolov5.models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 app.yolov5.models.common.C3 [128, 128, 2]
5 -1 1 295424 app.yolov5.models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 app.yolov5.models.common.C3 [256, 256, 3]
7 -1 1 1180672 app.yolov5.models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1]
9 -1 1 656896 app.yolov5.models.common.SPPF [512, 512, 5]
10 -1 1 131584 app.yolov5.models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 app.yolov5.models.common.Concat [1]
13 -1 1 361984 app.yolov5.models.common.C3 [512, 256, 1, False]
14 -1 1 33024 app.yolov5.models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 app.yolov5.models.common.Concat [1]
17 -1 1 90880 app.yolov5.models.common.C3 [256, 128, 1, False]
18 -1 1 147712 app.yolov5.models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 app.yolov5.models.common.Concat [1]
20 -1 1 296448 app.yolov5.models.common.C3 [256, 256, 1, False]
21 -1 1 590336 app.yolov5.models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 app.yolov5.models.common.Concat [1]
23 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 51243 app.yolov5.models.yolo.Detect [14, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 270 layers, 7057387 parameters, 7057387 gradients, 16.1 GFLOPs
**********************************
[<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06880>]
**********************************
**********************************
{'195095688265211904_17_detect': [<geventwebsocket.websocket.WebSocket object at 0x7fd0e269a340>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9820>, <geventwebsocket.websocket.WebSocket object at 0x7fcfb9ef6760>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9e20>], '194741569180540928_14_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06760>], '194741569180540928_15_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06a60>], '194741569180540928_16_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06520>], '194741569180540928_17_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d100>], '194741569180540928_18_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d460>], '194741569180540928_19_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06880>]}
**********************************
[{"index": 0, "name": "epochnum", "value": 10, "description": "\u8bad\u7ec3\u8f6e\u6b21", "default": 100, "type": "I", "show": true}, {"index": 1, "name": "batch_size", "value": 4, "description": "\u6279\u6b21\u56fe\u50cf\u6570\u91cf", "default": 1, "type": "I", "show": true}, {"index": 2, "name": "img_size", "value": 640, "description": "\u8bad\u7ec3\u56fe\u50cf\u5927\u5c0f", "default": 640, "type": "I", "show": true}, {"index": 3, "name": "device", "value": "cuda:0", "description": "\u8bad\u7ec3\u6838\u5fc3", "default": "cuda:0", "type": "E", "items": ["cuda:0", "cuda:1"], "show": false}, {"index": 4, "name": "saveModDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/1128test_194741569180540928_R-ODY_19.pt", "description": "\u4fdd\u5b58\u6a21\u578b\u8def\u5f84", "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", "show": false}, {"index": 5, "name": "resumeModPath", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt", "description": "\u7ee7\u7eed\u8bad\u7ec3\u8def\u5f84", "default": "", "type": "S", "show": false}, {"index": 6, "name": "resumeMod", "value": "", "description": "\u7ee7\u7eed\u8bad\u7ec3\u6a21\u578b", "default": "", "type": "E", "items": "", "show": true}, {"index": 7, "name": "CLASS_NAMES", "value": ["hole", "456", "aeroplane", "tvmonitor", "train", "boat", "dog", "chair", "bird", "bicycle", "person", "bottle", "sheep", "cat"], "description": "\u7c7b\u522b\u540d\u79f0", "default": "", "type": "L", "items": "", "show": false}, {"index": 8, "name": "DatasetDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori", "description": "\u6570\u636e\u96c6\u8def\u5f84", "default": "./app/maskrcnn/datasets/test", "type": "S", "show": false}]
**********************************
cuda:0
图像: ['2007_000032.jpg', '2007_000241.jpg', '2007_000068.jpg', '4.jpg', '3.jpg', '2007_000033.jpg', '10.jpg', '2007_000042.jpg', '7.jpg', '2007_000170.jpg', '2007_001583.jpg', '8.jpg', '2007_000187.jpg', '1.jpg', '2007_001457.jpg', '2007_000061.jpg', '2007_000027.jpg', '2007_000063.jpg', '2007_000129.jpg', '5.jpg', '2007_000123.jpg', '2007_000121.jpg', '9.jpg', '2007_000175.jpg', '2007_000039.jpg', '2007_001430.jpg', '6.jpg', '2007_001585.jpg', '2.jpg']
图像路径 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori/images/2007_000032.jpg
1111
标签 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori/labels/2007_000032.json
2222
ROOT############### /mnt/sdc/algorithm/R-ODY/app/yolov5
opt.device: cuda:0
device: cuda:0
get in train()
Process 194741569180540928_19_train:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/flask_sockets.py", line 40, in __call__
handler, values = adapter.match()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/werkzeug/routing.py", line 1945, in match
raise NotFound()
werkzeug.exceptions.NotFound: 404 Not Found: The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/mnt/sdc/algorithm/R-ODY/app/controller/AlgorithmController.py", line 327, in train_R0DY
train_start(weights, savemodel, epoches, img_size, batch_size, device, data_list, id, getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 733, in train_start
main(opt,data_list,id,getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 630, in main
train(opt.hyp, opt, device, data_list,id,getsomething,callbacks)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 168, in train
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 673, in to
return self._apply(convert)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/models/yolo.py", line 136, in _apply
self = super()._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 409, in _apply
param_applied = fn(param)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 671, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/cuda/__init__.py", line 160, in _lazy_init
raise RuntimeError(
RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
192.168.0.20 - - [2022-11-29 10:21:16] "GET /api/obtain_train_param HTTP/1.1" 200 1936 0.000878
------进入websocket
存储ws连接对象
192.168.0.20 - - [2022-11-29 10:21:27] "GET /api/start_train_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22epochnum%22%2C+%22value%22%3A+10%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu8f6e%5Cu6b21%22%2C+%22default%22%3A+100%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22batch_size%22%2C+%22value%22%3A+4%2C+%22description%22%3A+%22%5Cu6279%5Cu6b21%5Cu56fe%5Cu50cf%5Cu6570%5Cu91cf%22%2C+%22default%22%3A+1%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22img_size%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22cuda%3A0%22%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu6838%5Cu5fc3%22%2C+%22default%22%3A+%22cuda%3A0%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%5B%22cuda%3A0%22%2C+%22cuda%3A1%22%5D%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+4%2C+%22name%22%3A+%22saveModDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F1128test_194741569180540928_R-ODY_20.pt%22%2C+%22description%22%3A+%22%5Cu4fdd%5Cu5b58%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+5%2C+%22name%22%3A+%22resumeModPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2Fyolov5s.pt%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+6%2C+%22name%22%3A+%22resumeMod%22%2C+%22value%22%3A+%22%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu6a21%5Cu578b%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+7%2C+%22name%22%3A+%22CLASS_NAMES%22%2C+%22value%22%3A+%5B%22hole%22%2C+%22456%22%2C+%22aeroplane%22%2C+%22tvmonitor%22%2C+%22train%22%2C+%22boat%22%2C+%22dog%22%2C+%22chair%22%2C+%22bird%22%2C+%22bicycle%22%2C+%22person%22%2C+%22bottle%22%2C+%22sheep%22%2C+%22cat%22%5D%2C+%22description%22%3A+%22%5Cu7c7b%5Cu522b%5Cu540d%5Cu79f0%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22L%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+8%2C+%22name%22%3A+%22DatasetDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F194741569180540928%2Fori%22%2C+%22description%22%3A+%22%5Cu6570%5Cu636e%5Cu96c6%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2Ftest%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=194741569180540928_20_train HTTP/1.1" 200 161 0.050371
删除图片数据
删除json数据
train_server: weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt, savemodel=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/1128test_194741569180540928_R-ODY_20_640.pt, cfg=, data=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/coco128.yaml, hyp=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/hyps/hyp.scratch-low.yaml, epochs=10, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=cuda:0, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
TensorBoard: Start with 'tensorboard --logdir /mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=14
from n params module arguments
0 -1 1 3520 app.yolov5.models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 app.yolov5.models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 app.yolov5.models.common.C3 [64, 64, 1]
3 -1 1 73984 app.yolov5.models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 app.yolov5.models.common.C3 [128, 128, 2]
5 -1 1 295424 app.yolov5.models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 app.yolov5.models.common.C3 [256, 256, 3]
7 -1 1 1180672 app.yolov5.models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1]
9 -1 1 656896 app.yolov5.models.common.SPPF [512, 512, 5]
10 -1 1 131584 app.yolov5.models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 app.yolov5.models.common.Concat [1]
13 -1 1 361984 app.yolov5.models.common.C3 [512, 256, 1, False]
14 -1 1 33024 app.yolov5.models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 app.yolov5.models.common.Concat [1]
17 -1 1 90880 app.yolov5.models.common.C3 [256, 128, 1, False]
18 -1 1 147712 app.yolov5.models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 app.yolov5.models.common.Concat [1]
20 -1 1 296448 app.yolov5.models.common.C3 [256, 256, 1, False]
21 -1 1 590336 app.yolov5.models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 app.yolov5.models.common.Concat [1]
23 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 51243 app.yolov5.models.yolo.Detect [14, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 270 layers, 7057387 parameters, 7057387 gradients, 16.1 GFLOPs
**********************************
[<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d7c0>]
**********************************
**********************************
{'195095688265211904_17_detect': [<geventwebsocket.websocket.WebSocket object at 0x7fd0e269a340>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9820>, <geventwebsocket.websocket.WebSocket object at 0x7fcfb9ef6760>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9e20>], '194741569180540928_14_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06760>], '194741569180540928_15_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06a60>], '194741569180540928_16_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06520>], '194741569180540928_17_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d100>], '194741569180540928_18_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d460>], '194741569180540928_19_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06880>], '194741569180540928_20_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d7c0>]}
**********************************
[{"index": 0, "name": "epochnum", "value": 10, "description": "\u8bad\u7ec3\u8f6e\u6b21", "default": 100, "type": "I", "show": true}, {"index": 1, "name": "batch_size", "value": 4, "description": "\u6279\u6b21\u56fe\u50cf\u6570\u91cf", "default": 1, "type": "I", "show": true}, {"index": 2, "name": "img_size", "value": 640, "description": "\u8bad\u7ec3\u56fe\u50cf\u5927\u5c0f", "default": 640, "type": "I", "show": true}, {"index": 3, "name": "device", "value": "cuda:0", "description": "\u8bad\u7ec3\u6838\u5fc3", "default": "cuda:0", "type": "E", "items": ["cuda:0", "cuda:1"], "show": false}, {"index": 4, "name": "saveModDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/1128test_194741569180540928_R-ODY_20.pt", "description": "\u4fdd\u5b58\u6a21\u578b\u8def\u5f84", "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", "show": false}, {"index": 5, "name": "resumeModPath", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt", "description": "\u7ee7\u7eed\u8bad\u7ec3\u8def\u5f84", "default": "", "type": "S", "show": false}, {"index": 6, "name": "resumeMod", "value": "", "description": "\u7ee7\u7eed\u8bad\u7ec3\u6a21\u578b", "default": "", "type": "E", "items": "", "show": true}, {"index": 7, "name": "CLASS_NAMES", "value": ["hole", "456", "aeroplane", "tvmonitor", "train", "boat", "dog", "chair", "bird", "bicycle", "person", "bottle", "sheep", "cat"], "description": "\u7c7b\u522b\u540d\u79f0", "default": "", "type": "L", "items": "", "show": false}, {"index": 8, "name": "DatasetDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori", "description": "\u6570\u636e\u96c6\u8def\u5f84", "default": "./app/maskrcnn/datasets/test", "type": "S", "show": false}]
**********************************
cuda:0
图像: ['2007_000032.jpg', '2007_000241.jpg', '2007_000068.jpg', '4.jpg', '3.jpg', '2007_000033.jpg', '10.jpg', '2007_000042.jpg', '7.jpg', '2007_000170.jpg', '2007_001583.jpg', '8.jpg', '2007_000187.jpg', '1.jpg', '2007_001457.jpg', '2007_000061.jpg', '2007_000027.jpg', '2007_000063.jpg', '2007_000129.jpg', '5.jpg', '2007_000123.jpg', '2007_000121.jpg', '9.jpg', '2007_000175.jpg', '2007_000039.jpg', '2007_001430.jpg', '6.jpg', '2007_001585.jpg', '2.jpg']
图像路径 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori/images/2007_000032.jpg
1111
标签 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/194741569180540928/ori/labels/2007_000032.json
2222
ROOT############### /mnt/sdc/algorithm/R-ODY/app/yolov5
opt.device: cuda:0
device: cuda:0
get in train()
Process 194741569180540928_20_train:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/flask_sockets.py", line 40, in __call__
handler, values = adapter.match()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/werkzeug/routing.py", line 1945, in match
raise NotFound()
werkzeug.exceptions.NotFound: 404 Not Found: The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/mnt/sdc/algorithm/R-ODY/app/controller/AlgorithmController.py", line 327, in train_R0DY
train_start(weights, savemodel, epoches, img_size, batch_size, device, data_list, id, getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 733, in train_start
main(opt,data_list,id,getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 630, in main
train(opt.hyp, opt, device, data_list,id,getsomething,callbacks)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 168, in train
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 673, in to
return self._apply(convert)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/models/yolo.py", line 136, in _apply
self = super()._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 409, in _apply
param_applied = fn(param)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 671, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/cuda/__init__.py", line 160, in _lazy_init
raise RuntimeError(
RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
192.168.0.20 - - [2022-11-29 10:21:55] "GET /api/obtain_train_param HTTP/1.1" 200 1936 0.000899
------进入websocket
存储ws连接对象
192.168.0.20 - - [2022-11-29 10:22:24] "GET /api/start_train_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22epochnum%22%2C+%22value%22%3A+10%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu8f6e%5Cu6b21%22%2C+%22default%22%3A+100%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22batch_size%22%2C+%22value%22%3A+4%2C+%22description%22%3A+%22%5Cu6279%5Cu6b21%5Cu56fe%5Cu50cf%5Cu6570%5Cu91cf%22%2C+%22default%22%3A+1%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22img_size%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22cuda%3A0%22%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu6838%5Cu5fc3%22%2C+%22default%22%3A+%22cuda%3A0%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%5B%22cuda%3A0%22%2C+%22cuda%3A1%22%5D%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+4%2C+%22name%22%3A+%22saveModDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%5Cu6838%5Cu9178%5Cu68c0%5Cu6d4b_190857268466688000_R-ODY_18.pt%22%2C+%22description%22%3A+%22%5Cu4fdd%5Cu5b58%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+5%2C+%22name%22%3A+%22resumeModPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2Fyolov5s.pt%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+6%2C+%22name%22%3A+%22resumeMod%22%2C+%22value%22%3A+%22%2F1128test_194741569180540928_R-ODY_13_640.pt%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu6a21%5Cu578b%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+7%2C+%22name%22%3A+%22CLASS_NAMES%22%2C+%22value%22%3A+%5B%22hole%22%2C+%22456%22%2C+%22zui%22%2C+%22mianbang%22%5D%2C+%22description%22%3A+%22%5Cu7c7b%5Cu522b%5Cu540d%5Cu79f0%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22L%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+8%2C+%22name%22%3A+%22DatasetDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F190857268466688000%2Fori%22%2C+%22description%22%3A+%22%5Cu6570%5Cu636e%5Cu96c6%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2Ftest%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=190857268466688000_18_train HTTP/1.1" 200 161 0.050019
删除图片数据
删除json数据
192.168.0.20 - - [2022-11-29 10:22:26] "GET /api/obtain_download_pt_param HTTP/1.1" 200 792 0.000835
train_server: weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt, savemodel=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_18_640.pt, cfg=, data=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/coco128.yaml, hyp=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/hyps/hyp.scratch-low.yaml, epochs=10, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=cuda:0, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
TensorBoard: Start with 'tensorboard --logdir /mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4
from n params module arguments
0 -1 1 3520 app.yolov5.models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 app.yolov5.models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 app.yolov5.models.common.C3 [64, 64, 1]
3 -1 1 73984 app.yolov5.models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 app.yolov5.models.common.C3 [128, 128, 2]
5 -1 1 295424 app.yolov5.models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 app.yolov5.models.common.C3 [256, 256, 3]
7 -1 1 1180672 app.yolov5.models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1]
9 -1 1 656896 app.yolov5.models.common.SPPF [512, 512, 5]
10 -1 1 131584 app.yolov5.models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 app.yolov5.models.common.Concat [1]
13 -1 1 361984 app.yolov5.models.common.C3 [512, 256, 1, False]
14 -1 1 33024 app.yolov5.models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 app.yolov5.models.common.Concat [1]
17 -1 1 90880 app.yolov5.models.common.C3 [256, 128, 1, False]
18 -1 1 147712 app.yolov5.models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 app.yolov5.models.common.Concat [1]
20 -1 1 296448 app.yolov5.models.common.C3 [256, 256, 1, False]
21 -1 1 590336 app.yolov5.models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 app.yolov5.models.common.Concat [1]
23 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 24273 app.yolov5.models.yolo.Detect [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 270 layers, 7030417 parameters, 7030417 gradients, 16.0 GFLOPs
**********************************
[<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06e80>]
**********************************
**********************************
{'195095688265211904_17_detect': [<geventwebsocket.websocket.WebSocket object at 0x7fd0e269a340>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9820>, <geventwebsocket.websocket.WebSocket object at 0x7fcfb9ef6760>, <geventwebsocket.websocket.WebSocket object at 0x7fcf55fe9e20>], '194741569180540928_14_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06760>], '194741569180540928_15_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06a60>], '194741569180540928_16_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06520>], '194741569180540928_17_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d100>], '194741569180540928_18_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d460>], '194741569180540928_19_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06880>], '194741569180540928_20_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf5499d7c0>], '190857268466688000_18_train': [<geventwebsocket.websocket.WebSocket object at 0x7fcf54d06e80>]}
**********************************
[{"index": 0, "name": "epochnum", "value": 10, "description": "\u8bad\u7ec3\u8f6e\u6b21", "default": 100, "type": "I", "show": true}, {"index": 1, "name": "batch_size", "value": 4, "description": "\u6279\u6b21\u56fe\u50cf\u6570\u91cf", "default": 1, "type": "I", "show": true}, {"index": 2, "name": "img_size", "value": 640, "description": "\u8bad\u7ec3\u56fe\u50cf\u5927\u5c0f", "default": 640, "type": "I", "show": true}, {"index": 3, "name": "device", "value": "cuda:0", "description": "\u8bad\u7ec3\u6838\u5fc3", "default": "cuda:0", "type": "E", "items": ["cuda:0", "cuda:1"], "show": false}, {"index": 4, "name": "saveModDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/\u6838\u9178\u68c0\u6d4b_190857268466688000_R-ODY_18.pt", "description": "\u4fdd\u5b58\u6a21\u578b\u8def\u5f84", "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", "show": false}, {"index": 5, "name": "resumeModPath", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt", "description": "\u7ee7\u7eed\u8bad\u7ec3\u8def\u5f84", "default": "", "type": "S", "show": false}, {"index": 6, "name": "resumeMod", "value": "/1128test_194741569180540928_R-ODY_13_640.pt", "description": "\u7ee7\u7eed\u8bad\u7ec3\u6a21\u578b", "default": "", "type": "E", "items": "", "show": true}, {"index": 7, "name": "CLASS_NAMES", "value": ["hole", "456", "zui", "mianbang"], "description": "\u7c7b\u522b\u540d\u79f0", "default": "", "type": "L", "items": "", "show": false}, {"index": 8, "name": "DatasetDir", "value": "/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/190857268466688000/ori", "description": "\u6570\u636e\u96c6\u8def\u5f84", "default": "./app/maskrcnn/datasets/test", "type": "S", "show": false}]
**********************************
cuda:0
图像: ['IMG_20221117_132941~1.jpg', 'IMG_20221117_133002~1.jpg', 'IMG_20221117_152005~1.jpg', 'IMG_20221117_133005~1.jpg', 'IMG_20221117_132939~1.jpg', 'IMG_20221117_151945~1.jpg', 'IMG_20221117_133009~1.jpg', 'IMG_20221117_152023~1.jpg', 'IMG_20221117_133035~1.jpg', 'IMG_20221117_132947~1.jpg', 'IMG_20221117_151925~1.jpg', 'IMG_20221117_152026~1.jpg', 'IMG_20221117_133037~1.jpg', 'IMG_20221117_152018~1.jpg', 'IMG_20221117_152002~1.jpg', 'IMG_20221117_152004~1.jpg', 'IMG_20221117_152019~1.jpg', 'IMG_20221117_133006~1.jpg', 'IMG_20221117_152020~1.jpg', 'IMG_20221117_151959~1.jpg', 'IMG_20221117_152024~1.jpg', 'IMG_20221117_151921~1.jpg', 'IMG_20221117_151923~1.jpg', 'IMG_20221117_133038~1.jpg', 'IMG_20221117_151943~1.jpg', 'IMG_20221117_151924~1.jpg', 'IMG_20221117_152022~1.jpg', 'IMG_20221117_133032~1.jpg', 'IMG_20221117_151957~1.jpg', 'IMG_20221117_151939~1.jpg', 'IMG_20221117_133040~1.jpg', 'IMG_20221117_151946~1.jpg', 'IMG_20221117_151944~1.jpg', 'IMG_20221117_133007~1.jpg', 'IMG_20221117_132946~1.jpg', 'IMG_20221117_133004~1.jpg', 'IMG_20221117_152001~1.jpg', 'IMG_20221117_151941~1.jpg', 'IMG_20221117_151919~1.jpg', 'IMG_20221117_132944~1.jpg']
图像路径 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/190857268466688000/ori/images/IMG_20221117_132941~1.jpg
1111
标签 /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/190857268466688000/ori/labels/IMG_20221117_132941~1.json
2222
ROOT############### /mnt/sdc/algorithm/R-ODY/app/yolov5
opt.device: cuda:0
device: cuda:0
get in train()
Process 190857268466688000_18_train:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/flask_sockets.py", line 40, in __call__
handler, values = adapter.match()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/werkzeug/routing.py", line 1945, in match
raise NotFound()
werkzeug.exceptions.NotFound: 404 Not Found: The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/mnt/sdc/algorithm/R-ODY/app/controller/AlgorithmController.py", line 327, in train_R0DY
train_start(weights, savemodel, epoches, img_size, batch_size, device, data_list, id, getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 733, in train_start
main(opt,data_list,id,getsomething)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 630, in main
train(opt.hyp, opt, device, data_list,id,getsomething,callbacks)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/train_server.py", line 168, in train
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 673, in to
return self._apply(convert)
File "/mnt/sdc/algorithm/R-ODY/app/yolov5/models/yolo.py", line 136, in _apply
self = super()._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 387, in _apply
module._apply(fn)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 409, in _apply
param_applied = fn(param)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/nn/modules/module.py", line 671, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/torch/cuda/__init__.py", line 160, in _lazy_init
raise RuntimeError(
RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
export: data=app/yolov5/data/coco128.yaml, weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.pt, imgsz=[640, 640], batch_size=1, device=0, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=11, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB) YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB)
Fusing layers... Fusing layers...
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs
PyTorch: starting from /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.pt with output shape (1, 25200, 9) (13.8 MB) PyTorch: starting from /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.pt with output shape (1, 25200, 9) (13.8 MB)
TorchScript: starting export with torch 1.8.0+cu111... TorchScript: starting export with torch 1.8.0+cu111...
TorchScript: export success ✅ 0.9s, saved as /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.torchscript (27.3 MB) TorchScript: export success ✅ 1.0s, saved as /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.torchscript (27.3 MB)
ONNX: starting export with onnx 1.12.0... ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 1.8s, saved as /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx (27.2 MB) ONNX: export success ✅ 1.6s, saved as /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.onnx (27.2 MB)
Export complete (6.5s) Export complete (2.8s)
Results saved to /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights Results saved to /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights
Detect: python detect.py --weights /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx Detect: python detect.py --weights /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.onnx
Validate: python val.py --weights /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx Validate: python val.py --weights /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '/mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx') PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.onnx')
Visualize: https://netron.app Visualize: https://netron.app
192.168.0.20 - - [2022-11-24 08:59:15] "GET /api/start_download_pt?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22exp_inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2Faicheck%2FIntelligentizeAI%2Fdata_set%2Fweights%2Fces2_193120735164768256_R-ODY_2_640.pt%22%2C+%22description%22%3A+%22%5Cu8f6c%5Cu5316%5Cu6a21%5Cu578b%5Cu8f93%5Cu5165%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22E%3A%2Falg_demo-master%2Falg_demo%2Fapp%2Fyolov5%2F%5Cu5706%5Cu5b54_123_RODY_1_640.pt%2F%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22gpu%22%2C+%22description%22%3A+%22CPU%5Cu6216GPU%22%2C+%22default%22%3A+%22gpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22imgsz%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%5D&id=875 HTTP/1.1" 200 240 7.984953 192.168.0.20 - - [2022-11-29 10:22:31] "GET /api/start_download_pt?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22exp_inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%5Cu6838%5Cu9178%5Cu68c0%5Cu6d4b_190857268466688000_R-ODY_17_640.pt%22%2C+%22description%22%3A+%22%5Cu8f6c%5Cu5316%5Cu6a21%5Cu578b%5Cu8f93%5Cu5165%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22E%3A%2Falg_demo-master%2Falg_demo%2Fapp%2Fyolov5%2F%5Cu5706%5Cu5b54_123_RODY_1_640.pt%2F%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22gpu%22%2C+%22description%22%3A+%22CPU%5Cu6216GPU%22%2C+%22default%22%3A+%22gpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22imgsz%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%5D&id=737 HTTP/1.1" 200 270 3.030957
export: data=app/yolov5/data/coco128.yaml, weights=/mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.pt, imgsz=[640, 640], batch_size=1, device=0, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=11, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx'] ------进入websocket
YOLOv5 🚀 2022-11-7 Python-3.8.13 torch-1.8.0+cu111 CUDA:0 (Tesla T4, 15110MiB) 输入模型: /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.pt
['torchscript', 'onnx']
['torchscript', 'onnx']
('torchscript', 'onnx', 'openvino', 'engine', 'coreml', 'saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')
True
模型路径: /mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/核酸检测_190857268466688000_R-ODY_17_640.zip
存储ws连接对象
192.168.0.20 - - [2022-11-29 10:44:19] "GET /api/start_train_algorithm?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22epochnum%22%2C+%22value%22%3A+10%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu8f6e%5Cu6b21%22%2C+%22default%22%3A+100%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22batch_size%22%2C+%22value%22%3A+4%2C+%22description%22%3A+%22%5Cu6279%5Cu6b21%5Cu56fe%5Cu50cf%5Cu6570%5Cu91cf%22%2C+%22default%22%3A+1%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22img_size%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+3%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22cuda%3A0%22%2C+%22description%22%3A+%22%5Cu8bad%5Cu7ec3%5Cu6838%5Cu5fc3%22%2C+%22default%22%3A+%22cuda%3A0%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%5B%22cuda%3A0%22%2C+%22cuda%3A1%22%5D%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+4%2C+%22name%22%3A+%22saveModDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F1128test_194741569180540928_R-ODY_21.pt%22%2C+%22description%22%3A+%22%5Cu4fdd%5Cu5b58%5Cu6a21%5Cu578b%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fsaved_model%2Ftest.pt%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+5%2C+%22name%22%3A+%22resumeModPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2Fweights%2F%2Fyolov5s.pt%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+6%2C+%22name%22%3A+%22resumeMod%22%2C+%22value%22%3A+%22%22%2C+%22description%22%3A+%22%5Cu7ee7%5Cu7eed%5Cu8bad%5Cu7ec3%5Cu6a21%5Cu578b%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22E%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+true%7D%2C+%7B%22index%22%3A+7%2C+%22name%22%3A+%22CLASS_NAMES%22%2C+%22value%22%3A+%5B%22hole%22%2C+%22456%22%2C+%22aeroplane%22%2C+%22tvmonitor%22%2C+%22train%22%2C+%22boat%22%2C+%22dog%22%2C+%22chair%22%2C+%22bird%22%2C+%22bicycle%22%2C+%22person%22%2C+%22bottle%22%2C+%22sheep%22%2C+%22cat%22%5D%2C+%22description%22%3A+%22%5Cu7c7b%5Cu522b%5Cu540d%5Cu79f0%22%2C+%22default%22%3A+%22%22%2C+%22type%22%3A+%22L%22%2C+%22items%22%3A+%22%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+8%2C+%22name%22%3A+%22DatasetDir%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2FIntelligentizeAI%2FIntelligentizeAI%2Fdata_set%2F194741569180540928%2Fori%22%2C+%22description%22%3A+%22%5Cu6570%5Cu636e%5Cu96c6%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22.%2Fapp%2Fmaskrcnn%2Fdatasets%2Ftest%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%5D&id=194741569180540928_21_train HTTP/1.1" 200 161 0.051209
删除图片数据
删除json数据
train_server: weights=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights//yolov5s.pt, savemodel=/mnt/sdc/IntelligentizeAI/IntelligentizeAI/data_set/weights/1128test_194741569180540928_R-ODY_21_640.pt, cfg=, data=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/coco128.yaml, hyp=/mnt/sdc/algorithm/R-ODY/app/yolov5/data/hyps/hyp.scratch-low.yaml, epochs=10, batch_size=4, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=cuda:0, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=/mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
TensorBoard: Start with 'tensorboard --logdir /mnt/sdc/algorithm/R-ODY/app/yolov5/runs/train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=14
Fusing layers... from n params module arguments
Model summary: 213 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs 0 -1 1 3520 app.yolov5.models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 app.yolov5.models.common.Conv [32, 64, 3, 2]
PyTorch: starting from /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.pt with output shape (1, 25200, 9) (13.8 MB) 2 -1 1 18816 app.yolov5.models.common.C3 [64, 64, 1]
3 -1 1 73984 app.yolov5.models.common.Conv [64, 128, 3, 2]
TorchScript: starting export with torch 1.8.0+cu111... 4 -1 2 115712 app.yolov5.models.common.C3 [128, 128, 2]
TorchScript: export success ✅ 0.8s, saved as /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.torchscript (27.3 MB) 5 -1 1 295424 app.yolov5.models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 app.yolov5.models.common.C3 [256, 256, 3]
ONNX: starting export with onnx 1.12.0... 7 -1 1 1180672 app.yolov5.models.common.Conv [256, 512, 3, 2]
ONNX: export success ✅ 1.6s, saved as /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx (27.2 MB) 8 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1]
9 -1 1 656896 app.yolov5.models.common.SPPF [512, 512, 5]
Export complete (2.6s) 10 -1 1 131584 app.yolov5.models.common.Conv [512, 256, 1, 1]
Results saved to /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
Detect: python detect.py --weights /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx 12 [-1, 6] 1 0 app.yolov5.models.common.Concat [1]
Validate: python val.py --weights /mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx 13 -1 1 361984 app.yolov5.models.common.C3 [512, 256, 1, False]
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '/mnt/sdc/aicheck/IntelligentizeAI/data_set/weights/ces2_193120735164768256_R-ODY_2_640.onnx') 14 -1 1 33024 app.yolov5.models.common.Conv [256, 128, 1, 1]
Visualize: https://netron.app 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
192.168.0.20 - - [2022-11-24 08:59:17] "GET /api/start_download_pt?param=%5B%7B%22index%22%3A+0%2C+%22name%22%3A+%22exp_inputPath%22%2C+%22value%22%3A+%22%2Fmnt%2Fsdc%2Faicheck%2FIntelligentizeAI%2Fdata_set%2Fweights%2Fces2_193120735164768256_R-ODY_2_640.pt%22%2C+%22description%22%3A+%22%5Cu8f6c%5Cu5316%5Cu6a21%5Cu578b%5Cu8f93%5Cu5165%5Cu8def%5Cu5f84%22%2C+%22default%22%3A+%22E%3A%2Falg_demo-master%2Falg_demo%2Fapp%2Fyolov5%2F%5Cu5706%5Cu5b54_123_RODY_1_640.pt%2F%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+1%2C+%22name%22%3A+%22device%22%2C+%22value%22%3A+%22gpu%22%2C+%22description%22%3A+%22CPU%5Cu6216GPU%22%2C+%22default%22%3A+%22gpu%22%2C+%22type%22%3A+%22S%22%2C+%22show%22%3A+false%7D%2C+%7B%22index%22%3A+2%2C+%22name%22%3A+%22imgsz%22%2C+%22value%22%3A+640%2C+%22description%22%3A+%22%5Cu56fe%5Cu50cf%5Cu5927%5Cu5c0f%22%2C+%22default%22%3A+640%2C+%22type%22%3A+%22I%22%2C+%22show%22%3A+true%7D%5D&id=875 HTTP/1.1" 200 240 2.709875 16 [-1, 4] 1 0 app.yolov5.models.common.Concat [1]
17 -1 1 90880 app.yolov5.models.common.C3 [256, 128, 1, False]
18 -1 1 147712 app.yolov5.models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 app.yolov5.models.common.Concat [1]
20 -1 1 296448 app.yolov5.models.common.C3 [256, 256, 1, False]
21 -1 1 590336 app.yolov5.models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 app.yolov5.models.common.Concat [1]
23 -1 1 1182720 app.yolov5.models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 51243 app.yolov5.models.yolo.Detect [14, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]

27
train_log.txt Normal file
View File

@ -0,0 +1,27 @@
nohup: ignoring input
2022-11-28 17:42:23,653 INFO sqlalchemy.engine.Engine select pg_catalog.version()
2022-11-28 17:42:23,653 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-28 17:42:23,659 INFO sqlalchemy.engine.Engine select current_schema()
2022-11-28 17:42:23,659 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-28 17:42:23,663 INFO sqlalchemy.engine.Engine show standard_conforming_strings
2022-11-28 17:42:23,664 INFO sqlalchemy.engine.Engine [raw sql] {}
2022-11-28 17:42:23,669 INFO sqlalchemy.engine.Engine BEGIN (implicit)
2022-11-28 17:42:23,669 INFO sqlalchemy.engine.Engine COMMIT
Traceback (most recent call last):
File "./app/run.py", line 134, in <module>
server.serve_forever()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/baseserver.py", line 398, in serve_forever
self.start()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/baseserver.py", line 336, in start
self.init_socket()
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/pywsgi.py", line 1545, in init_socket
StreamServer.init_socket(self)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/server.py", line 180, in init_socket
self.socket = self.get_listener(self.address, self.backlog, self.family)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/server.py", line 192, in get_listener
return _tcp_listener(address, backlog=backlog, reuse_addr=cls.reuse_addr, family=family)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/server.py", line 288, in _tcp_listener
sock.bind(address)
File "/home/wd/anaconda3/envs/aicheck_RODY/lib/python3.8/site-packages/gevent/_socketcommon.py", line 563, in bind
return self._sock.bind(address)
OSError: [Errno 98] Address already in use: ('192.168.0.20', 6914)