# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu FROM ubuntu:20.04 # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Install linux packages RUN apt update RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev # RUN alias python=python3 # Install pip packages COPY requirements.txt . RUN python3 -m pip install --upgrade pip wheel RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \ coremltools onnx onnx-simplifier onnxruntime tensorflow-cpu tensorflowjs \ # openvino-dev \ --extra-index-url https://download.pytorch.org/whl/cpu # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents # COPY . /usr/src/app (issues as not a .git directory) RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t