""" @Time : 2022/9/20 16:17 @Auth : 东 @File :AlgorithmController.py @IDE :PyCharm @Motto:ABC(Always Be Coding) @Desc:算法接口 """ import json from functools import wraps from threading import Thread from flask import Blueprint, request from app.schemas.TrainResult import Report, ProcessValueList from app.utils.RedisMQTool import Task from app.utils.StandardizedOutput import output_wrapped from app.utils.redis_config import redis_client from app.utils.websocket_tool import manager from app.configs.global_var import set_value import sys from pathlib import Path from pynvml import * # FILE = Path(__file__).resolve() # ROOT = FILE.parents[0] # YOLOv5 root directory # if str(ROOT) not in sys.path: # sys.path.append(str(ROOT)) # add ROOT to PATH # sys.path.append("/mnt/sdc/algorithm/AICheck-MaskRCNN/app/maskrcnn_ppx") # import ppx as pdx bp = Blueprint('AlgorithmController', __name__) ifKillDict = {} def start_train_algorithm(): """ 调用训练算法 """ def wrapTheFunction(func): @wraps(func) @bp.route('/start_train_algorithm', methods=['get']) def wrapped_function(): param = request.args.get('param') id = request.args.get('id') t = Thread(target=func, args=(param, id)) set_value(key=id, value=False) t.start() return output_wrapped(0, 'success', '成功') return wrapped_function return wrapTheFunction def start_test_algorithm(): """ 调用验证算法 """ def wrapTheFunction(func): @wraps(func) @bp.route('/start_test_algorithm', methods=['get']) def wrapped_function_test(): param = request.args.get('param') id = request.args.get('id') t = Thread(target=func, args=(param, id)) t.start() return output_wrapped(0, 'success', '成功') return wrapped_function_test return wrapTheFunction def start_detect_algorithm(): """ 调用检测算法 """ def wrapTheFunction(func): @wraps(func) @bp.route('/start_detect_algorithm', methods=['get']) def wrapped_function_detect(): param = request.args.get('param') id = request.args.get('id') t = Thread(target=func, args=(param, id)) t.start() return output_wrapped(0, 'success', '成功') return wrapped_function_detect return wrapTheFunction def start_download_pt(): """ 下载模型 """ def wrapTheFunction(func): @wraps(func) @bp.route('/start_download_pt', methods=['get']) def wrapped_function_start_download_pt(): param = request.args.get('param') data = func(param) return output_wrapped(0, 'success', data) return wrapped_function_start_download_pt return wrapTheFunction def algorithm_process_value(): """ 获取中间值, redis订阅发布 """ def wrapTheFunction(func): @wraps(func) def wrapped_function(*args, **kwargs): data = func(*args, **kwargs) print(data) Task(redis_conn=redis_client.get_redis(), channel="ceshi").publish_task( data={'code': 0, 'msg': 'success', 'data': data}) return output_wrapped(0, 'success', data) return wrapped_function return wrapTheFunction def algorithm_process_value_websocket(): """ 获取中间值, websocket发布 """ def wrapTheFunction(func): @wraps(func) def wrapped_function(*args, **kwargs): data = func(*args, **kwargs) id = data["id"] data_res = {'code': 0, "type": 'connected', 'msg': 'success', 'data': data} manager.send_message_proj_json(message=data_res, id=id) return data return wrapped_function return wrapTheFunction def algorithm_kill_value_websocket(): """ 获取kill值, websocket发布 """ def wrapTheFunction(func): @wraps(func) def wrapped_function(*args, **kwargs): data = func(*args, **kwargs) id = data["id"] data_res = {'code': 1, "type": 'kill', 'msg': 'success', 'data': data} manager.send_message_proj_json(message=data_res, id=id) return data return wrapped_function return wrapTheFunction def algorithm_error_value_websocket(): """ 获取error值, websocket发布 """ def wrapTheFunction(func): @wraps(func) def wrapped_function(*args, **kwargs): data = func(*args, **kwargs) id = data["id"] data_res = {'code': 2, "type": 'error', 'msg': 'fail', 'data': data} manager.send_message_proj_json(message=data_res, id=id) return data return wrapped_function return wrapTheFunction def obtain_train_param(): """ 获取训练参数 """ def wrapTheFunction(func): @wraps(func) @bp.route('/obtain_train_param', methods=['get']) def wrapped_function_train_param(*args, **kwargs): data = func(*args, **kwargs) return output_wrapped(0, 'success', data) return wrapped_function_train_param return wrapTheFunction def obtain_test_param(): """ 获取验证参数 """ def wrapTheFunction(func): @wraps(func) @bp.route('/obtain_test_param', methods=['get']) def wrapped_function_test_param(*args, **kwargs): data = func(*args, **kwargs) return output_wrapped(0, 'success', data) return wrapped_function_test_param return wrapTheFunction def obtain_detect_param(): """ 获取测试参数 """ def wrapTheFunction(func): @wraps(func) @bp.route('/obtain_detect_param', methods=['get']) def wrapped_function_inf_param(*args, **kwargs): data = func(*args, **kwargs) return output_wrapped(0, 'success', data) return wrapped_function_inf_param return wrapTheFunction def obtain_download_pt_param(): """ 获取下载模型参数 """ def wrapTheFunction(func): @wraps(func) @bp.route('/obtain_download_pt_param', methods=['get']) def wrapped_function_obtain_download_pt_param(*args, **kwargs): data = func(*args, **kwargs) return output_wrapped(0, 'success', data) return wrapped_function_obtain_download_pt_param return wrapTheFunction @bp.route('/change_ifKillDIct', methods=['get']) def change_ifKillDIct(): """ 修改全局变量 """ id = request.args.get('id') type = request.args.get('type') set_value(id, type) return output_wrapped(0, 'success') # @start_train_algorithm() # def start(param: str): # """ # 例子 # """ # print(param) # process_value_list = ProcessValueList(name='1', value=[]) # report = Report(rate_of_progess=0, process_value=[process_value_list], id='1') # # @algorithm_process_value_websocket() # def process(v: int): # print(v) # report.rate_of_progess = ((v + 1) / 10) * 100 # report.precision[0].value.append(v) # return report.dict() # # for i in range(10): # process(i) # return report.dict() from setparams import TrainParams import os from app.schemas.TrainResult import DetectProcessValueDice, DetectReport from app import file_tool def error_return(id: str, data): """ 算法出错,返回 """ data_res = {'code': 2, "type": 'error', 'msg': 'fail', 'data': data} manager.send_message_proj_json(message=data_res, id=id) # 启动训练 @start_train_algorithm() def train_R0DY(params_str, id): print('**********************************') print(params_str) print('**********************************') from app.yolov5.train_server import train_start params = TrainParams() params.read_from_str(params_str) print(params.get('device').default) data_list = file_tool.get_file(ori_path=params.get('DatasetDir').value, type_list=params.get('CLASS_NAMES').value) weights = params.get('resumeModPath').value # 初始化模型绝对路径 img_size = params.get('img_size').value savemodel = os.path.splitext(params.get('saveModDir').value)[0] + '_' + str(img_size) + '.pt' # 模型命名加上图像参数 epoches = params.get('epochnum').value batch_size = params.get('batch_size').value device = params.get('device').value #try: train_start(weights, savemodel, epoches, img_size, batch_size, device, data_list, id) print("train down!") # except Exception as e: # print(repr(e)) # error_return(id=id,data=repr(e)) # 启动验证程序 @start_test_algorithm() def validate_RODY(params_str, id): from app.yolov5.validate_server import validate_start params = TrainParams() params.read_from_str(params_str) weights = params.get('modPath').value # 验证模型绝对路径 (filename, extension) = os.path.splitext(weights) # 文件名与后缀名分开 img_size = int(filename.split('ROD')[1].split('_')[2]) # 获取图像参数 # v_num = int(filename.split('ROD')[1].split('_')[1]) #获取版本号 output = params.get('outputPath').value batch_size = params.get('batch_size').default device = params.get('device').value validate_start(weights, img_size, batch_size, device, output, id) @start_detect_algorithm() def detect_RODY(params_str, id): from app.yolov5.detect_server import detect_start params = TrainParams() params.read_from_str(params_str) weights = params.get('modPath').value # 检测模型绝对路径 input = params.get('inputPath').value outpath = params.get('outputPath').value # (filename, extension) = os.path.splitext(weights) # 文件名与后缀名分开 # img_size = int(filename.split('ROD')[1].split('_')[2]) #获取图像参数 # v_num = int(filename.split('ROD')[1].split('_')[1]) #获取版本号 # batch_size = params.get('batch_size').default device = params.get('device').value detect_start(input, weights, outpath, device, id) @start_download_pt() def Export_model_RODY(params_str): from app.yolov5.export import Start_Model_Export import zipfile params = TrainParams() params.read_from_str(params_str) exp_inputPath = params.get('exp_inputPath').value # 模型路径 print('输入模型:', exp_inputPath) exp_device = params.get('device').value imgsz = params.get('imgsz').value modellist = Start_Model_Export(exp_inputPath, exp_device, imgsz) exp_outputPath = exp_inputPath.replace('pt', 'zip') # 压缩文件 print('模型路径:',exp_outputPath) zipf = zipfile.ZipFile(exp_outputPath, 'w') for file in modellist: zipf.write(file, arcname=Path(file).name) # 将torchscript和onnx模型压缩 return exp_outputPath @obtain_train_param() def returnTrainParams(): nvmlInit() gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数 _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)] params_list = [ {"index": 0, "name": "epochnum", "value": 10, "description": '训练轮次', "default": 100, "type": "I", 'show': True}, {"index": 1, "name": "batch_size", "value": 4, "description": '批次图像数量', "default": 1, "type": "I", 'show': True}, {"index": 2, "name": "img_size", "value": 640, "description": '训练图像大小', "default": 640, "type": "I", 'show': True}, {"index": 3, "name": "device", "value": f'{_kernel[0]}', "description": '训练核心', "default": f'{_kernel[0]}', "type": "E", "items": _kernel, 'show': True}, # _kernel {"index": 4, "name": "saveModDir", "value": "E:/alg_demo-master/alg_demo/app/yolov5/best.pt", "description": '保存模型路径', "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False}, {"index": 5, "name": "resumeModPath", "value": '/yolov5s.pt', "description": '继续训练路径', "default": '', "type": "S", 'show': False}, {"index": 6, "name": "resumeMod", "value": '', "description": '继续训练模型', "default": '', "type": "E", "items": '', 'show': True}, {"index": 7, "name": "CLASS_NAMES", "value": ['hole', '456'], "description": '类别名称', "default": '', "type": "L", "items": '', 'show': False}, {"index": 8, "name": "DatasetDir", "value": "E:/aicheck/data_set/11442136178662604800/ori", "description": '数据集路径', "default": "./app/maskrcnn/datasets/test", "type": "S", 'show': False} # ORI_PATH ] # {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}] params_str = json.dumps(params_list) return params_str @obtain_test_param() def returnValidateParams(): # nvmlInit() # gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数 # _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)] params_list = [ {"index": 0, "name": "modPath", "value": "E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt", "description": '验证模型路径', "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False}, {"index": 1, "name": "batch_size", "value": 1, "description": '批次图像数量', "default": 1, "type": "I", 'show': False}, {"index": 2, "name": "img_size", "value": 640, "description": '训练图像大小', "default": 640, "type": "I", 'show': False}, {"index": 3, "name": "outputPath", "value": 'E:/aicheck/data_set/11442136178662604800/val_results/', "description": '输出结果路径', "default": './app/maskrcnn/datasets/M006B_waibi/res', "type": "S", 'show': False}, {"index": 4, "name": "device", "value": "0", "description": '训练核心', "default": "cuda", "type": "S", "items": '', 'show': False} # _kernel ] # {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}] params_str = json.dumps(params_list) return params_str @obtain_detect_param() def returnDetectParams(): # nvmlInit() # gpuDeviceCount = nvmlDeviceGetCount() # 获取Nvidia GPU块数 # _kernel = [f"cuda:{a}" for a in range(gpuDeviceCount)] params_list = [ {"index": 0, "name": "inputPath", "value": 'E:/aicheck/data_set/11442136178662604800/input/', "description": '输入图像路径', "default": './app/maskrcnn/datasets/M006B_waibi/JPEGImages', "type": "S", 'show': False}, {"index": 1, "name": "outputPath", "value": 'E:/aicheck/data_set/11442136178662604800/val_results/', "description": '输出结果路径', "default": './app/maskrcnn/datasets/M006B_waibi/res', "type": "S", 'show': False}, {"index": 2, "name": "modPath", "value": "E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt", "description": '模型路径', "default": "./app/maskrcnn/saved_model/test.pt", "type": "S", 'show': False}, {"index": 3, "name": "device", "value": "0", "description": '推理核', "default": "cpu", "type": "S", 'show': False}, ] # {"index": 9, "name": "saveEpoch", "value": 2, "description": '保存模型轮次', "default": 2, "type": "I", 'show': True}] params_str = json.dumps(params_list) return params_str @obtain_download_pt_param() def returnDownloadParams(): params_list = [ {"index": 0, "name": "exp_inputPath", "value": 'E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt', "description": '转化模型输入路径', "default": 'E:/alg_demo-master/alg_demo/app/yolov5/圆孔_123_RODY_1_640.pt/', "type": "S", 'show': False}, {"index": 1, "name": "device", "value": 'gpu', "description": 'CPU或GPU', "default": 'gpu', "type": "S", 'show': False}, {"index": 2, "name": "imgsz", "value": 640, "description": '图像大小', "default": 640, "type": "I", 'show': True} ] params_str = json.dumps(params_list) return params_str if __name__ == '__main__': par = returnTrainParams() print(par) id='1' train_R0DY(par,id)