# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Image augmentation functions """ import math import random import cv2 import numpy as np import torch import torchvision.transforms as T import torchvision.transforms.functional as TF from app.yolov5.utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box from app.yolov5.utils.metrics import bbox_ioa IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation class Albumentations: # YOLOv5 Albumentations class (optional, only used if package is installed) def __init__(self): self.transform = None prefix = colorstr('albumentations: ') try: import albumentations as A check_version(A.__version__, '1.0.3', hard=True) # version requirement T = [ A.Blur(p=0.01), A.MedianBlur(p=0.01), A.ToGray(p=0.01), A.CLAHE(p=0.01), A.RandomBrightnessContrast(p=0.0), A.RandomGamma(p=0.0), A.ImageCompression(quality_lower=75, p=0.0)] # transforms self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') def __call__(self, im, labels, p=1.0): if self.transform and random.random() < p: new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) return im, labels def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std return TF.normalize(x, mean, std, inplace=inplace) def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean for i in range(3): x[:, i] = x[:, i] * std[i] + mean[i] return x def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): # HSV color-space augmentation if hgain or sgain or vgain: r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) dtype = im.dtype # uint8 x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed def hist_equalize(im, clahe=True, bgr=False): # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) if clahe: c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) yuv[:, :, 0] = c.apply(yuv[:, :, 0]) else: yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB def replicate(im, labels): # Replicate labels h, w = im.shape[:2] boxes = labels[:, 1:].astype(int) x1, y1, x2, y2 = boxes.T s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices x1b, y1b, x2b, y2b = boxes[i] bh, bw = y2b - y1b, x2b - x1b yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) return im, labels def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, ratio, (dw, dh) def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) # targets = [cls, xyxy] height = im.shape[0] + border[0] * 2 # shape(h,w,c) width = im.shape[1] + border[1] * 2 # Center C = np.eye(3) C[0, 2] = -im.shape[1] / 2 # x translation (pixels) C[1, 2] = -im.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3) P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - scale, 1 + scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if perspective: im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) else: # affine im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # Visualize # import matplotlib.pyplot as plt # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() # ax[0].imshow(im[:, :, ::-1]) # base # ax[1].imshow(im2[:, :, ::-1]) # warped # Transform label coordinates n = len(targets) if n: use_segments = any(x.any() for x in segments) new = np.zeros((n, 4)) if use_segments: # warp segments segments = resample_segments(segments) # upsample for i, segment in enumerate(segments): xy = np.ones((len(segment), 3)) xy[:, :2] = segment xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine # clip new[i] = segment2box(xy, width, height) else: # warp boxes xy = np.ones((n * 4, 3)) xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) # filter candidates i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) targets = targets[i] targets[:, 1:5] = new[i] return im, targets def copy_paste(im, labels, segments, p=0.5): # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) n = len(segments) if p and n: h, w, c = im.shape # height, width, channels im_new = np.zeros(im.shape, np.uint8) for j in random.sample(range(n), k=round(p * n)): l, s = labels[j], segments[j] box = w - l[3], l[2], w - l[1], l[4] ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area if (ioa < 0.30).all(): # allow 30% obscuration of existing labels labels = np.concatenate((labels, [[l[0], *box]]), 0) segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) result = cv2.bitwise_and(src1=im, src2=im_new) result = cv2.flip(result, 1) # augment segments (flip left-right) i = result > 0 # pixels to replace # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug return im, labels, segments def cutout(im, labels, p=0.5): # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 if random.random() < p: h, w = im.shape[:2] scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction for s in scales: mask_h = random.randint(1, int(h * s)) # create random masks mask_w = random.randint(1, int(w * s)) # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # return unobscured labels if len(labels) and s > 0.03: box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area labels = labels[ioa < 0.60] # remove >60% obscured labels return labels def mixup(im, labels, im2, labels2): # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 im = (im * r + im2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) return im, labels def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates def classify_albumentations(augment=True, size=224, scale=(0.08, 1.0), hflip=0.5, vflip=0.0, jitter=0.4, mean=IMAGENET_MEAN, std=IMAGENET_STD, auto_aug=False): # YOLOv5 classification Albumentations (optional, only used if package is installed) prefix = colorstr('albumentations: ') try: import albumentations as A from albumentations.pytorch import ToTensorV2 check_version(A.__version__, '1.0.3', hard=True) # version requirement if augment: # Resize and crop T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] if auto_aug: # TODO: implement AugMix, AutoAug & RandAug in albumentation LOGGER.info(f'{prefix}auto augmentations are currently not supported') else: if hflip > 0: T += [A.HorizontalFlip(p=hflip)] if vflip > 0: T += [A.VerticalFlip(p=vflip)] if jitter > 0: color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue T += [A.ColorJitter(*color_jitter, 0)] else: # Use fixed crop for eval set (reproducibility) T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) return A.Compose(T) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') def classify_transforms(size=224): # Transforms to apply if albumentations not installed assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)' # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) class LetterBox: # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) def __init__(self, size=(640, 640), auto=False, stride=32): super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size self.auto = auto # pass max size integer, automatically solve for short side using stride self.stride = stride # used with auto def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] r = min(self.h / imh, self.w / imw) # ratio of new/old h, w = round(imh * r), round(imw * r) # resized image hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) return im_out class CenterCrop: # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) def __init__(self, size=640): super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] m = min(imh, imw) # min dimension top, left = (imh - m) // 2, (imw - m) // 2 return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) class ToTensor: # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) def __init__(self, half=False): super().__init__() self.half = half def __call__(self, im): # im = np.array HWC in BGR order im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous im = torch.from_numpy(im) # to torch im = im.half() if self.half else im.float() # uint8 to fp16/32 im /= 255.0 # 0-255 to 0.0-1.0 return im