104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
"""
|
|
Activation functions
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class SiLU(nn.Module):
|
|
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
|
@staticmethod
|
|
def forward(x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
class Hardswish(nn.Module):
|
|
# Hard-SiLU activation
|
|
@staticmethod
|
|
def forward(x):
|
|
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
|
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
|
|
|
|
|
class Mish(nn.Module):
|
|
# Mish activation https://github.com/digantamisra98/Mish
|
|
@staticmethod
|
|
def forward(x):
|
|
return x * F.softplus(x).tanh()
|
|
|
|
|
|
class MemoryEfficientMish(nn.Module):
|
|
# Mish activation memory-efficient
|
|
class F(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.save_for_backward(x)
|
|
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
x = ctx.saved_tensors[0]
|
|
sx = torch.sigmoid(x)
|
|
fx = F.softplus(x).tanh()
|
|
return grad_output * (fx + x * sx * (1 - fx * fx))
|
|
|
|
def forward(self, x):
|
|
return self.F.apply(x)
|
|
|
|
|
|
class FReLU(nn.Module):
|
|
# FReLU activation https://arxiv.org/abs/2007.11824
|
|
def __init__(self, c1, k=3): # ch_in, kernel
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
|
self.bn = nn.BatchNorm2d(c1)
|
|
|
|
def forward(self, x):
|
|
return torch.max(x, self.bn(self.conv(x)))
|
|
|
|
|
|
class AconC(nn.Module):
|
|
r""" ACON activation (activate or not)
|
|
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
|
"""
|
|
|
|
def __init__(self, c1):
|
|
super().__init__()
|
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
|
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
|
|
|
def forward(self, x):
|
|
dpx = (self.p1 - self.p2) * x
|
|
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
|
|
|
|
|
class MetaAconC(nn.Module):
|
|
r""" ACON activation (activate or not)
|
|
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
|
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
|
"""
|
|
|
|
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
|
super().__init__()
|
|
c2 = max(r, c1 // r)
|
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
|
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
|
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
|
# self.bn1 = nn.BatchNorm2d(c2)
|
|
# self.bn2 = nn.BatchNorm2d(c1)
|
|
|
|
def forward(self, x):
|
|
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
|
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
|
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
|
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
|
dpx = (self.p1 - self.p2) * x
|
|
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|