66 lines
1.3 KiB
Markdown
66 lines
1.3 KiB
Markdown
|
|
||
|
|
||
|
# 整体流程
|
||
|
|
||
|
## 1.Pytorch->TensorRT
|
||
|
|
||
|
```shell
|
||
|
python export.py --weights "torch权重路径" --onnx2trt --fp16_trt
|
||
|
```
|
||
|
|
||
|
|
||
|
## 2.TensorRT推理
|
||
|
```shell
|
||
|
python torch2trt/main.py --trt_path "trt权重路径"
|
||
|
```
|
||
|
|
||
|
图像预处理 -> TensorRT推理 -> 可视化结果
|
||
|
|
||
|
|
||
|
|
||
|
# 耗时对比
|
||
|
|
||
|
| | Pytorch(ms) | TensorRT_FP16(ms) |
|
||
|
|:---:|:----:|:----:|
|
||
|
| yolov5n-0.5 | 7.7 | 2.1 |
|
||
|
| yolov5n-face | 7.7 | 2.4 |
|
||
|
| yolov5s-face | 5.6 | 2.2 |
|
||
|
| yolov5m-face | 9.9 | 3.3 |
|
||
|
| yolov5l-face | 15.9 | 4.5 |
|
||
|
|
||
|
> Pytorch=1.10.0+cu102 TensorRT=8.2.0.6 Hardware=rtx2080ti
|
||
|
|
||
|
```shell
|
||
|
python torch2trt/speed.py --torch_path "torch权重路径" --trt_path "trt权重路径"
|
||
|
```
|
||
|
|
||
|
|
||
|
|
||
|
# 可视化
|
||
|
|
||
|
<table>
|
||
|
<tr>
|
||
|
<th>yolov5n-0.5</th>
|
||
|
<th>yolov5n-face</th>
|
||
|
</tr>
|
||
|
<tr>
|
||
|
<td><img src="./imgs/yolov5n-0.5.jpg" /></td>
|
||
|
<td><img src="./imgs/yolov5n-face.jpg" /></td>
|
||
|
</tr>
|
||
|
</table>
|
||
|
|
||
|
<table>
|
||
|
<tr>
|
||
|
<th>yolov5s-face</th>
|
||
|
<th>yolov5m-face</th>
|
||
|
<th>yolov5l-face</th>
|
||
|
</tr>
|
||
|
<tr>
|
||
|
<td><img src="./imgs/yolov5s-face.jpg" /></td>
|
||
|
<td><img src="./imgs/yolov5m-face.jpg" /></td>
|
||
|
<td><img src="./imgs/yolov5l-face.jpg" /></td>
|
||
|
</tr>
|
||
|
</table>
|
||
|
|
||
|
|