304 lines
8.8 KiB
Python
304 lines
8.8 KiB
Python
|
"""
|
||
|
WiderFace evaluation code
|
||
|
author: wondervictor
|
||
|
mail: tianhengcheng@gmail.com
|
||
|
copyright@wondervictor
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
import tqdm
|
||
|
import pickle
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
from scipy.io import loadmat
|
||
|
from bbox import bbox_overlaps
|
||
|
from IPython import embed
|
||
|
|
||
|
|
||
|
def get_gt_boxes(gt_dir):
|
||
|
""" gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)"""
|
||
|
|
||
|
gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat'))
|
||
|
hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat'))
|
||
|
medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat'))
|
||
|
easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat'))
|
||
|
|
||
|
facebox_list = gt_mat['face_bbx_list']
|
||
|
event_list = gt_mat['event_list']
|
||
|
file_list = gt_mat['file_list']
|
||
|
|
||
|
hard_gt_list = hard_mat['gt_list']
|
||
|
medium_gt_list = medium_mat['gt_list']
|
||
|
easy_gt_list = easy_mat['gt_list']
|
||
|
|
||
|
return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list
|
||
|
|
||
|
|
||
|
def get_gt_boxes_from_txt(gt_path, cache_dir):
|
||
|
|
||
|
cache_file = os.path.join(cache_dir, 'gt_cache.pkl')
|
||
|
if os.path.exists(cache_file):
|
||
|
f = open(cache_file, 'rb')
|
||
|
boxes = pickle.load(f)
|
||
|
f.close()
|
||
|
return boxes
|
||
|
|
||
|
f = open(gt_path, 'r')
|
||
|
state = 0
|
||
|
lines = f.readlines()
|
||
|
lines = list(map(lambda x: x.rstrip('\r\n'), lines))
|
||
|
boxes = {}
|
||
|
print(len(lines))
|
||
|
f.close()
|
||
|
current_boxes = []
|
||
|
current_name = None
|
||
|
for line in lines:
|
||
|
if state == 0 and '--' in line:
|
||
|
state = 1
|
||
|
current_name = line
|
||
|
continue
|
||
|
if state == 1:
|
||
|
state = 2
|
||
|
continue
|
||
|
|
||
|
if state == 2 and '--' in line:
|
||
|
state = 1
|
||
|
boxes[current_name] = np.array(current_boxes).astype('float32')
|
||
|
current_name = line
|
||
|
current_boxes = []
|
||
|
continue
|
||
|
|
||
|
if state == 2:
|
||
|
box = [float(x) for x in line.split(' ')[:4]]
|
||
|
current_boxes.append(box)
|
||
|
continue
|
||
|
|
||
|
f = open(cache_file, 'wb')
|
||
|
pickle.dump(boxes, f)
|
||
|
f.close()
|
||
|
return boxes
|
||
|
|
||
|
|
||
|
def read_pred_file(filepath):
|
||
|
|
||
|
with open(filepath, 'r') as f:
|
||
|
lines = f.readlines()
|
||
|
img_file = lines[0].rstrip('\n\r')
|
||
|
lines = lines[2:]
|
||
|
|
||
|
# b = lines[0].rstrip('\r\n').split(' ')[:-1]
|
||
|
# c = float(b)
|
||
|
# a = map(lambda x: [[float(a[0]), float(a[1]), float(a[2]), float(a[3]), float(a[4])] for a in x.rstrip('\r\n').split(' ')], lines)
|
||
|
boxes = []
|
||
|
for line in lines:
|
||
|
line = line.rstrip('\r\n').split(' ')
|
||
|
if line[0] == '':
|
||
|
continue
|
||
|
# a = float(line[4])
|
||
|
boxes.append([float(line[0]), float(line[1]), float(line[2]), float(line[3]), float(line[4])])
|
||
|
boxes = np.array(boxes)
|
||
|
# boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float')
|
||
|
return img_file.split('/')[-1], boxes
|
||
|
|
||
|
|
||
|
def get_preds(pred_dir):
|
||
|
events = os.listdir(pred_dir)
|
||
|
boxes = dict()
|
||
|
pbar = tqdm.tqdm(events)
|
||
|
|
||
|
for event in pbar:
|
||
|
pbar.set_description('Reading Predictions ')
|
||
|
event_dir = os.path.join(pred_dir, event)
|
||
|
event_images = os.listdir(event_dir)
|
||
|
current_event = dict()
|
||
|
for imgtxt in event_images:
|
||
|
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
|
||
|
current_event[imgname.rstrip('.jpg')] = _boxes
|
||
|
boxes[event] = current_event
|
||
|
return boxes
|
||
|
|
||
|
|
||
|
def norm_score(pred):
|
||
|
""" norm score
|
||
|
pred {key: [[x1,y1,x2,y2,s]]}
|
||
|
"""
|
||
|
|
||
|
max_score = 0
|
||
|
min_score = 1
|
||
|
|
||
|
for _, k in pred.items():
|
||
|
for _, v in k.items():
|
||
|
if len(v) == 0:
|
||
|
continue
|
||
|
_min = np.min(v[:, -1])
|
||
|
_max = np.max(v[:, -1])
|
||
|
max_score = max(_max, max_score)
|
||
|
min_score = min(_min, min_score)
|
||
|
|
||
|
diff = max_score - min_score
|
||
|
for _, k in pred.items():
|
||
|
for _, v in k.items():
|
||
|
if len(v) == 0:
|
||
|
continue
|
||
|
v[:, -1] = (v[:, -1] - min_score)/diff
|
||
|
|
||
|
|
||
|
def image_eval(pred, gt, ignore, iou_thresh):
|
||
|
""" single image evaluation
|
||
|
pred: Nx5
|
||
|
gt: Nx4
|
||
|
ignore:
|
||
|
"""
|
||
|
|
||
|
_pred = pred.copy()
|
||
|
_gt = gt.copy()
|
||
|
pred_recall = np.zeros(_pred.shape[0])
|
||
|
recall_list = np.zeros(_gt.shape[0])
|
||
|
proposal_list = np.ones(_pred.shape[0])
|
||
|
|
||
|
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
|
||
|
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
|
||
|
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
|
||
|
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
|
||
|
|
||
|
overlaps = bbox_overlaps(_pred[:, :4], _gt)
|
||
|
|
||
|
for h in range(_pred.shape[0]):
|
||
|
|
||
|
gt_overlap = overlaps[h]
|
||
|
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
|
||
|
if max_overlap >= iou_thresh:
|
||
|
if ignore[max_idx] == 0:
|
||
|
recall_list[max_idx] = -1
|
||
|
proposal_list[h] = -1
|
||
|
elif recall_list[max_idx] == 0:
|
||
|
recall_list[max_idx] = 1
|
||
|
|
||
|
r_keep_index = np.where(recall_list == 1)[0]
|
||
|
pred_recall[h] = len(r_keep_index)
|
||
|
return pred_recall, proposal_list
|
||
|
|
||
|
|
||
|
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
|
||
|
pr_info = np.zeros((thresh_num, 2)).astype('float')
|
||
|
for t in range(thresh_num):
|
||
|
|
||
|
thresh = 1 - (t+1)/thresh_num
|
||
|
r_index = np.where(pred_info[:, 4] >= thresh)[0]
|
||
|
if len(r_index) == 0:
|
||
|
pr_info[t, 0] = 0
|
||
|
pr_info[t, 1] = 0
|
||
|
else:
|
||
|
r_index = r_index[-1]
|
||
|
p_index = np.where(proposal_list[:r_index+1] == 1)[0]
|
||
|
pr_info[t, 0] = len(p_index)
|
||
|
pr_info[t, 1] = pred_recall[r_index]
|
||
|
return pr_info
|
||
|
|
||
|
|
||
|
def dataset_pr_info(thresh_num, pr_curve, count_face):
|
||
|
_pr_curve = np.zeros((thresh_num, 2))
|
||
|
for i in range(thresh_num):
|
||
|
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
|
||
|
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
|
||
|
return _pr_curve
|
||
|
|
||
|
|
||
|
def voc_ap(rec, prec):
|
||
|
|
||
|
# correct AP calculation
|
||
|
# first append sentinel values at the end
|
||
|
mrec = np.concatenate(([0.], rec, [1.]))
|
||
|
mpre = np.concatenate(([0.], prec, [0.]))
|
||
|
|
||
|
# compute the precision envelope
|
||
|
for i in range(mpre.size - 1, 0, -1):
|
||
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||
|
|
||
|
# to calculate area under PR curve, look for points
|
||
|
# where X axis (recall) changes value
|
||
|
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||
|
|
||
|
# and sum (\Delta recall) * prec
|
||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||
|
return ap
|
||
|
|
||
|
|
||
|
def evaluation(pred, gt_path, iou_thresh=0.5):
|
||
|
pred = get_preds(pred)
|
||
|
norm_score(pred)
|
||
|
facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path)
|
||
|
event_num = len(event_list)
|
||
|
thresh_num = 1000
|
||
|
settings = ['easy', 'medium', 'hard']
|
||
|
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
|
||
|
aps = []
|
||
|
for setting_id in range(3):
|
||
|
# different setting
|
||
|
gt_list = setting_gts[setting_id]
|
||
|
count_face = 0
|
||
|
pr_curve = np.zeros((thresh_num, 2)).astype('float')
|
||
|
# [hard, medium, easy]
|
||
|
pbar = tqdm.tqdm(range(event_num))
|
||
|
for i in pbar:
|
||
|
pbar.set_description('Processing {}'.format(settings[setting_id]))
|
||
|
event_name = str(event_list[i][0][0])
|
||
|
img_list = file_list[i][0]
|
||
|
pred_list = pred[event_name]
|
||
|
sub_gt_list = gt_list[i][0]
|
||
|
# img_pr_info_list = np.zeros((len(img_list), thresh_num, 2))
|
||
|
gt_bbx_list = facebox_list[i][0]
|
||
|
|
||
|
for j in range(len(img_list)):
|
||
|
pred_info = pred_list[str(img_list[j][0][0])]
|
||
|
|
||
|
gt_boxes = gt_bbx_list[j][0].astype('float')
|
||
|
keep_index = sub_gt_list[j][0]
|
||
|
count_face += len(keep_index)
|
||
|
|
||
|
if len(gt_boxes) == 0 or len(pred_info) == 0:
|
||
|
continue
|
||
|
ignore = np.zeros(gt_boxes.shape[0])
|
||
|
if len(keep_index) != 0:
|
||
|
ignore[keep_index-1] = 1
|
||
|
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh)
|
||
|
|
||
|
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)
|
||
|
|
||
|
pr_curve += _img_pr_info
|
||
|
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
|
||
|
|
||
|
propose = pr_curve[:, 0]
|
||
|
recall = pr_curve[:, 1]
|
||
|
|
||
|
ap = voc_ap(recall, propose)
|
||
|
aps.append(ap)
|
||
|
|
||
|
print("==================== Results ====================")
|
||
|
print("Easy Val AP: {}".format(aps[0]))
|
||
|
print("Medium Val AP: {}".format(aps[1]))
|
||
|
print("Hard Val AP: {}".format(aps[2]))
|
||
|
print("=================================================")
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-p', '--pred', default="./widerface_txt/")
|
||
|
parser.add_argument('-g', '--gt', default='./ground_truth/')
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
evaluation(args.pred, args.gt)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|