28 lines
861 B
Python
28 lines
861 B
Python
|
import torch
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# 加载预训练的模型
|
||
|
model = YOLO('weights/plate_detect.pt')
|
||
|
|
||
|
# 设置图像路径
|
||
|
image_path = r'D:\Project\ChePai\test\images\val\20230331163841.jpg'
|
||
|
|
||
|
# 进行推理
|
||
|
results = model(image_path)
|
||
|
|
||
|
# 解析结果
|
||
|
for r in results:
|
||
|
boxes = r.boxes # 包含检测结果的Boxes对象
|
||
|
# 获取边界框坐标
|
||
|
box_coordinates = boxes.xyxy.cpu().numpy()
|
||
|
# 获取置信度分数
|
||
|
confidences = boxes.conf.cpu().numpy()
|
||
|
# 获取类别标签
|
||
|
labels = boxes.cls.cpu().numpy().astype(int)
|
||
|
|
||
|
# 打印检测结果
|
||
|
for i in range(len(box_coordinates)):
|
||
|
x1, y1, x2, y2 = box_coordinates[i]
|
||
|
confidence = confidences[i]
|
||
|
label = model.names[labels[i]]
|
||
|
print(f'Object: {label}, Confidence: {confidence:.2f}, Bounding Box: ({x1:.2f}, {y1:.2f}, {x2:.2f}, {y2:.2f})')
|