203 lines
7.8 KiB
Python
203 lines
7.8 KiB
Python
|
import torch.nn as nn
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class myNet_ocr(nn.Module):
|
||
|
def __init__(self,cfg=None,num_classes=78,export=False):
|
||
|
super(myNet_ocr, self).__init__()
|
||
|
if cfg is None:
|
||
|
cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256]
|
||
|
# cfg =[32,32,'M',64,64,'M',128,128,'M',256,256]
|
||
|
self.feature = self.make_layers(cfg, True)
|
||
|
self.export = export
|
||
|
# self.classifier = nn.Linear(cfg[-1], num_classes)
|
||
|
# self.loc = nn.MaxPool2d((2, 2), (5, 1), (0, 1),ceil_mode=True)
|
||
|
# self.loc = nn.AvgPool2d((2, 2), (5, 2), (0, 1),ceil_mode=False)
|
||
|
self.loc = nn.MaxPool2d((5, 2), (1, 1),(0,1),ceil_mode=False)
|
||
|
self.newCnn=nn.Conv2d(cfg[-1],num_classes,1,1)
|
||
|
# self.newBn=nn.BatchNorm2d(num_classes)
|
||
|
def make_layers(self, cfg, batch_norm=False):
|
||
|
layers = []
|
||
|
in_channels = 3
|
||
|
for i in range(len(cfg)):
|
||
|
if i == 0:
|
||
|
conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
else :
|
||
|
if cfg[i] == 'M':
|
||
|
layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)]
|
||
|
else:
|
||
|
conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=(1,1),stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.feature(x)
|
||
|
x=self.loc(x)
|
||
|
x=self.newCnn(x)
|
||
|
# x=self.newBn(x)
|
||
|
if self.export:
|
||
|
conv = x.squeeze(2) # b *512 * width
|
||
|
conv = conv.transpose(2,1) # [w, b, c]
|
||
|
# conv =conv.argmax(dim=2)
|
||
|
return conv
|
||
|
else:
|
||
|
b, c, h, w = x.size()
|
||
|
assert h == 1, "the height of conv must be 1"
|
||
|
conv = x.squeeze(2) # b *512 * width
|
||
|
conv = conv.permute(2, 0, 1) # [w, b, c]
|
||
|
# output = F.log_softmax(self.rnn(conv), dim=2)
|
||
|
output = torch.softmax(conv, dim=2)
|
||
|
return output
|
||
|
|
||
|
myCfg = [32,'M',64,'M',96,'M',128,'M',256]
|
||
|
class myNet(nn.Module):
|
||
|
def __init__(self,cfg=None,num_classes=3):
|
||
|
super(myNet, self).__init__()
|
||
|
if cfg is None:
|
||
|
cfg = myCfg
|
||
|
self.feature = self.make_layers(cfg, True)
|
||
|
self.classifier = nn.Linear(cfg[-1], num_classes)
|
||
|
def make_layers(self, cfg, batch_norm=False):
|
||
|
layers = []
|
||
|
in_channels = 3
|
||
|
for i in range(len(cfg)):
|
||
|
if i == 0:
|
||
|
conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
else :
|
||
|
if cfg[i] == 'M':
|
||
|
layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)]
|
||
|
else:
|
||
|
conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=1,stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.feature(x)
|
||
|
x = nn.AvgPool2d(kernel_size=3, stride=1)(x)
|
||
|
x = x.view(x.size(0), -1)
|
||
|
y = self.classifier(x)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class MyNet_color(nn.Module):
|
||
|
def __init__(self, class_num=6):
|
||
|
super(MyNet_color, self).__init__()
|
||
|
self.class_num = class_num
|
||
|
self.backbone = nn.Sequential(
|
||
|
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=(5, 5), stride=(1, 1)), # 0
|
||
|
torch.nn.BatchNorm2d(16),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=(2, 2)),
|
||
|
nn.Dropout(0),
|
||
|
nn.Flatten(),
|
||
|
nn.Linear(480, 64),
|
||
|
nn.Dropout(0),
|
||
|
nn.ReLU(),
|
||
|
nn.Linear(64, class_num),
|
||
|
nn.Dropout(0),
|
||
|
nn.Softmax(1)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
logits = self.backbone(x)
|
||
|
|
||
|
return logits
|
||
|
|
||
|
|
||
|
class myNet_ocr_color(nn.Module):
|
||
|
def __init__(self,cfg=None,num_classes=78,export=False,color_num=None):
|
||
|
super(myNet_ocr_color, self).__init__()
|
||
|
if cfg is None:
|
||
|
cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256]
|
||
|
# cfg =[32,32,'M',64,64,'M',128,128,'M',256,256]
|
||
|
self.feature = self.make_layers(cfg, True)
|
||
|
self.export = export
|
||
|
self.color_num=color_num
|
||
|
self.conv_out_num=12 #颜色第一个卷积层输出通道12
|
||
|
if self.color_num:
|
||
|
self.conv1=nn.Conv2d(cfg[-1],self.conv_out_num,kernel_size=3,stride=2)
|
||
|
self.bn1=nn.BatchNorm2d(self.conv_out_num)
|
||
|
self.relu1=nn.ReLU(inplace=True)
|
||
|
self.gap =nn.AdaptiveAvgPool2d(output_size=1)
|
||
|
self.color_classifier=nn.Conv2d(self.conv_out_num,self.color_num,kernel_size=1,stride=1)
|
||
|
self.color_bn = nn.BatchNorm2d(self.color_num)
|
||
|
self.flatten = nn.Flatten()
|
||
|
self.loc = nn.MaxPool2d((5, 2), (1, 1),(0,1),ceil_mode=False)
|
||
|
self.newCnn=nn.Conv2d(cfg[-1],num_classes,1,1)
|
||
|
# self.newBn=nn.BatchNorm2d(num_classes)
|
||
|
def make_layers(self, cfg, batch_norm=False):
|
||
|
layers = []
|
||
|
in_channels = 3
|
||
|
for i in range(len(cfg)):
|
||
|
if i == 0:
|
||
|
conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
else :
|
||
|
if cfg[i] == 'M':
|
||
|
layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)]
|
||
|
else:
|
||
|
conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=(1,1),stride =1)
|
||
|
if batch_norm:
|
||
|
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
|
||
|
else:
|
||
|
layers += [conv2d, nn.ReLU(inplace=True)]
|
||
|
in_channels = cfg[i]
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.feature(x)
|
||
|
if self.color_num:
|
||
|
x_color=self.conv1(x)
|
||
|
x_color=self.bn1(x_color)
|
||
|
x_color =self.relu1(x_color)
|
||
|
x_color = self.color_classifier(x_color)
|
||
|
x_color = self.color_bn(x_color)
|
||
|
x_color =self.gap(x_color)
|
||
|
x_color = self.flatten(x_color)
|
||
|
x=self.loc(x)
|
||
|
x=self.newCnn(x)
|
||
|
|
||
|
if self.export:
|
||
|
conv = x.squeeze(2) # b *512 * width
|
||
|
conv = conv.transpose(2,1) # [w, b, c]
|
||
|
if self.color_num:
|
||
|
return conv,x_color
|
||
|
return conv
|
||
|
else:
|
||
|
b, c, h, w = x.size()
|
||
|
assert h == 1, "the height of conv must be 1"
|
||
|
conv = x.squeeze(2) # b *512 * width
|
||
|
conv = conv.permute(2, 0, 1) # [w, b, c]
|
||
|
output = F.log_softmax(conv, dim=2)
|
||
|
if self.color_num:
|
||
|
return output,x_color
|
||
|
return output
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
x = torch.randn(1,3,48,216)
|
||
|
model = myNet_ocr(num_classes=78,export=True)
|
||
|
out = model(x)
|
||
|
print(out.shape)
|