detect_plate/torch2trt/trt_model.py

119 lines
4.0 KiB
Python
Raw Normal View History

2024-08-07 09:32:38 +08:00
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
import numpy as np
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
def GiB(val):
return val * 1 << 30
def ONNX_to_TRT(onnx_model_path=None,trt_engine_path=None,fp16_mode=False):
"""
仅适用TensorRT V8版本
生成cudaEngine并保存引擎文件(仅支持固定输入尺度)
fp16_mode: True则fp16预测
onnx_model_path: 将加载的onnx权重路径
trt_engine_path: trt引擎文件保存路径
"""
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(EXPLICIT_BATCH)
parser = trt.OnnxParser(network, TRT_LOGGER)
config = builder.create_builder_config()
config.max_workspace_size=GiB(1)
if fp16_mode:
config.set_flag(trt.BuilderFlag.FP16)
with open(onnx_model_path, 'rb') as model:
assert parser.parse(model.read())
serialized_engine=builder.build_serialized_network(network, config)
with open(trt_engine_path, 'wb') as f:
f.write(serialized_engine) # 序列化
print('TensorRT file in ' + trt_engine_path)
print('============ONNX->TensorRT SUCCESS============')
class TrtModel():
'''
TensorRT infer
'''
def __init__(self,trt_path):
self.ctx=cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)
# Deserialize the engine from file
with open(trt_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
for binding in engine:
print('bingding:', binding, engine.get_binding_shape(binding))
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
self.input_w = engine.get_binding_shape(binding)[-1]
self.input_h = engine.get_binding_shape(binding)[-2]
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
self.batch_size = engine.max_batch_size
def __call__(self,img_np_nchw):
'''
TensorRT推理
:param img_np_nchw: 输入图像
'''
self.ctx.push()
# Restore
stream = self.stream
context = self.context
engine = self.engine
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
np.copyto(host_inputs[0], img_np_nchw.ravel())
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle)
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
stream.synchronize()
self.ctx.pop()
return host_outputs[0]
def destroy(self):
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()