156 lines
6.8 KiB
Python
156 lines
6.8 KiB
Python
|
# Auto-anchor utils
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import yaml
|
||
|
from scipy.cluster.vq import kmeans
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from utils.general import colorstr
|
||
|
|
||
|
|
||
|
def check_anchor_order(m):
|
||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||
|
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||
|
da = a[-1] - a[0] # delta a
|
||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||
|
if da.sign() != ds.sign(): # same order
|
||
|
print('Reversing anchor order')
|
||
|
m.anchors[:] = m.anchors.flip(0)
|
||
|
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||
|
|
||
|
|
||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||
|
# Check anchor fit to data, recompute if necessary
|
||
|
prefix = colorstr('autoanchor: ')
|
||
|
print(f'\n{prefix}Analyzing anchors... ', end='')
|
||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||
|
|
||
|
def metric(k): # compute metric
|
||
|
r = wh[:, None] / k[None]
|
||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||
|
best = x.max(1)[0] # best_x
|
||
|
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||
|
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||
|
return bpr, aat
|
||
|
|
||
|
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
||
|
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
|
||
|
if bpr < 0.98: # threshold to recompute
|
||
|
print('. Attempting to improve anchors, please wait...')
|
||
|
na = m.anchor_grid.numel() // 2 # number of anchors
|
||
|
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||
|
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
||
|
if new_bpr > bpr: # replace anchors
|
||
|
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
||
|
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
||
|
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||
|
check_anchor_order(m)
|
||
|
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||
|
else:
|
||
|
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
|
||
|
print('') # newline
|
||
|
|
||
|
|
||
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||
|
""" Creates kmeans-evolved anchors from training dataset
|
||
|
|
||
|
Arguments:
|
||
|
path: path to dataset *.yaml, or a loaded dataset
|
||
|
n: number of anchors
|
||
|
img_size: image size used for training
|
||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||
|
gen: generations to evolve anchors using genetic algorithm
|
||
|
verbose: print all results
|
||
|
|
||
|
Return:
|
||
|
k: kmeans evolved anchors
|
||
|
|
||
|
Usage:
|
||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||
|
"""
|
||
|
thr = 1. / thr
|
||
|
prefix = colorstr('autoanchor: ')
|
||
|
|
||
|
def metric(k, wh): # compute metrics
|
||
|
r = wh[:, None] / k[None]
|
||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||
|
return x, x.max(1)[0] # x, best_x
|
||
|
|
||
|
def anchor_fitness(k): # mutation fitness
|
||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||
|
return (best * (best > thr).float()).mean() # fitness
|
||
|
|
||
|
def print_results(k):
|
||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||
|
x, best = metric(k, wh0)
|
||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||
|
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
|
||
|
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
|
||
|
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
|
||
|
for i, x in enumerate(k):
|
||
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||
|
return k
|
||
|
|
||
|
if isinstance(path, str): # *.yaml file
|
||
|
with open(path) as f:
|
||
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
||
|
from utils.datasets import LoadImagesAndLabels
|
||
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||
|
else:
|
||
|
dataset = path # dataset
|
||
|
|
||
|
# Get label wh
|
||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||
|
|
||
|
# Filter
|
||
|
i = (wh0 < 3.0).any(1).sum()
|
||
|
if i:
|
||
|
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
||
|
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||
|
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||
|
|
||
|
# Kmeans calculation
|
||
|
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
|
||
|
s = wh.std(0) # sigmas for whitening
|
||
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||
|
k *= s
|
||
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||
|
k = print_results(k)
|
||
|
|
||
|
# Plot
|
||
|
# k, d = [None] * 20, [None] * 20
|
||
|
# for i in tqdm(range(1, 21)):
|
||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||
|
# ax = ax.ravel()
|
||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||
|
# fig.savefig('wh.png', dpi=200)
|
||
|
|
||
|
# Evolve
|
||
|
npr = np.random
|
||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||
|
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
|
||
|
for _ in pbar:
|
||
|
v = np.ones(sh)
|
||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||
|
kg = (k.copy() * v).clip(min=2.0)
|
||
|
fg = anchor_fitness(kg)
|
||
|
if fg > f:
|
||
|
f, k = fg, kg.copy()
|
||
|
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||
|
if verbose:
|
||
|
print_results(k)
|
||
|
|
||
|
return print_results(k)
|