detect_plate/json2yolo.py

122 lines
4.7 KiB
Python
Raw Normal View History

2024-08-07 09:32:38 +08:00
import json
import os
import numpy as np
from copy import deepcopy
import cv2
def allFilePath(rootPath,allFIleList):
fileList = os.listdir(rootPath)
for temp in fileList:
if os.path.isfile(os.path.join(rootPath,temp)):
allFIleList.append(os.path.join(rootPath,temp))
else:
allFilePath(os.path.join(rootPath,temp),allFIleList)
def xywh2yolo(rect,landmarks_sort,img):
h,w,c =img.shape
rect[0] = max(0, rect[0])
rect[1] = max(0, rect[1])
rect[2] = min(w - 1, rect[2]-rect[0])
rect[3] = min(h - 1, rect[3]-rect[1])
annotation = np.zeros((1, 12))
annotation[0, 0] = (rect[0] + rect[2] / 2) / w # cx
annotation[0, 1] = (rect[1] + rect[3] / 2) / h # cy
annotation[0, 2] = rect[2] / w # w
annotation[0, 3] = rect[3] / h # h
annotation[0, 4] = landmarks_sort[0][0] / w # l0_x
annotation[0, 5] = landmarks_sort[0][1] / h # l0_y
annotation[0, 6] = landmarks_sort[1][0] / w # l1_x
annotation[0, 7] = landmarks_sort[1][1] / h # l1_y
annotation[0, 8] = landmarks_sort[2][0] / w # l2_x
annotation[0, 9] = landmarks_sort[2][1] / h # l2_y
annotation[0, 10] = landmarks_sort[3][0] / w # l3_x
annotation[0, 11] = landmarks_sort[3][1] / h # l3_y
# annotation[0, 12] = (landmarks_sort[0][0]+landmarks_sort[1][0])/2 / w # l4_x
# annotation[0, 13] = (landmarks_sort[0][1]+landmarks_sort[1][1])/2 / h # l4_y
return annotation
def order_points(pts):
rect = np.zeros((4, 2), dtype = "float32")
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
if __name__ == "__main__":
pic_file_list = []
pic_file = r"/mnt/Gpan/Mydata/pytorchPorject/datasets/ccpd/train_bisai/train_bisai"
save_small_path = "small"
label_file = ['0','1']
allFilePath(pic_file,pic_file_list)
count=0
index = 0
for pic_ in pic_file_list:
if not pic_.endswith(".jpg"):
continue
count+=1
img = cv2.imread(pic_)
img_name = os.path.basename(pic_)
txt_name = img_name.replace(".jpg",".txt")
txt_path = os.path.join(pic_file,txt_name)
json_file_ = pic_.replace(".jpg",".json")
if not os.path.exists(json_file_):
continue
with open(json_file_, 'r',encoding='utf-8') as a:
data_dict = json.load(a)
# print(data_dict['shapes'])
with open(txt_path,"w") as f:
for data_message in data_dict['shapes']:
index+=1
label=data_message['label']
points = data_message['points']
pts = np.array(points)
# pts=order_points(pts)
# new_img = four_point_transform(img,pts)
roi_img_name = label+"_"+str(index)+".jpg"
save_path=os.path.join(save_small_path,roi_img_name)
# cv2.imwrite(save_path,new_img)
x_max,y_max = np.max(pts,axis=0)
x_min,y_min = np.min(pts,axis=0)
rect = [x_min,y_min,x_max,y_max]
rect1=deepcopy(rect)
annotation=xywh2yolo(rect1,pts,img)
print(data_message)
label = data_message['label']
str_label = label_file.index(label)
# str_label = "0 "
str_label = str(str_label)+" "
for i in range(len(annotation[0])):
str_label = str_label + " " + str(annotation[0][i])
str_label = str_label.replace('[', '').replace(']', '')
str_label = str_label.replace(',', '') + '\n'
f.write(str_label)
print(count,img_name)
# point=data_message[points]