350 lines
14 KiB
Python
350 lines
14 KiB
Python
|
# -*- coding: UTF-8 -*-
|
|||
|
from flask import Flask, request, jsonify
|
|||
|
from PIL import Image
|
|||
|
import io
|
|||
|
import base64
|
|||
|
import time
|
|||
|
from pathlib import Path
|
|||
|
import os
|
|||
|
import cv2
|
|||
|
import torch
|
|||
|
import torch.backends.cudnn as cudnn
|
|||
|
from numpy import random
|
|||
|
import copy
|
|||
|
import numpy as np
|
|||
|
from models.experimental import attempt_load
|
|||
|
from utils.datasets import letterbox
|
|||
|
from utils.general import check_img_size, non_max_suppression_face, apply_classifier, scale_coords, xyxy2xywh, \
|
|||
|
strip_optimizer, set_logging, increment_path
|
|||
|
from utils.plots import plot_one_box
|
|||
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
|||
|
from utils.cv_puttext import cv2ImgAddText
|
|||
|
from plate_recognition.plate_rec import get_plate_result, allFilePath, init_model, cv_imread
|
|||
|
# from plate_recognition.plate_cls import cv_imread
|
|||
|
from plate_recognition.double_plate_split_merge import get_split_merge
|
|||
|
|
|||
|
|
|||
|
clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
|
|||
|
danger = ['危', '险']
|
|||
|
|
|||
|
|
|||
|
def order_points(pts): # 四个点按照左上 右上 右下 左下排列
|
|||
|
rect = np.zeros((4, 2), dtype="float32")
|
|||
|
s = pts.sum(axis=1)
|
|||
|
rect[0] = pts[np.argmin(s)]
|
|||
|
rect[2] = pts[np.argmax(s)]
|
|||
|
diff = np.diff(pts, axis=1)
|
|||
|
rect[1] = pts[np.argmin(diff)]
|
|||
|
rect[3] = pts[np.argmax(diff)]
|
|||
|
return rect
|
|||
|
|
|||
|
|
|||
|
def four_point_transform(image, pts): # 透视变换得到车牌小图
|
|||
|
# rect = order_points(pts)
|
|||
|
rect = pts.astype('float32')
|
|||
|
(tl, tr, br, bl) = rect
|
|||
|
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
|
|||
|
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
|
|||
|
maxWidth = max(int(widthA), int(widthB))
|
|||
|
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
|
|||
|
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
|
|||
|
maxHeight = max(int(heightA), int(heightB))
|
|||
|
dst = np.array([
|
|||
|
[0, 0],
|
|||
|
[maxWidth - 1, 0],
|
|||
|
[maxWidth - 1, maxHeight - 1],
|
|||
|
[0, maxHeight - 1]], dtype="float32")
|
|||
|
M = cv2.getPerspectiveTransform(rect, dst)
|
|||
|
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
|||
|
return warped
|
|||
|
|
|||
|
|
|||
|
def load_model(weights, device): # 加载检测模型
|
|||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
|||
|
return model
|
|||
|
|
|||
|
|
|||
|
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None): # 返回到原图坐标
|
|||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
|||
|
if ratio_pad is None: # calculate from img0_shape
|
|||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|||
|
else:
|
|||
|
gain = ratio_pad[0][0]
|
|||
|
pad = ratio_pad[1]
|
|||
|
|
|||
|
coords[:, [0, 2, 4, 6]] -= pad[0] # x padding
|
|||
|
coords[:, [1, 3, 5, 7]] -= pad[1] # y padding
|
|||
|
coords[:, :8] /= gain
|
|||
|
# clip_coords(coords, img0_shape)
|
|||
|
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
|||
|
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
|||
|
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
|||
|
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
|||
|
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
|||
|
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
|||
|
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
|||
|
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
|||
|
# coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
|||
|
# coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
|||
|
return coords
|
|||
|
|
|||
|
|
|||
|
def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num, device, plate_rec_model,
|
|||
|
is_color=False): # 获取车牌坐标以及四个角点坐标并获取车牌号
|
|||
|
h, w, c = img.shape
|
|||
|
Box = {}
|
|||
|
result_dict = {}
|
|||
|
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
|||
|
|
|||
|
x1 = int(xyxy[0])
|
|||
|
y1 = int(xyxy[1])
|
|||
|
x2 = int(xyxy[2])
|
|||
|
y2 = int(xyxy[3])
|
|||
|
height = y2 - y1
|
|||
|
landmarks_np = np.zeros((4, 2))
|
|||
|
rect = [x1, y1, x2, y2]
|
|||
|
for i in range(4):
|
|||
|
point_x = int(landmarks[2 * i])
|
|||
|
point_y = int(landmarks[2 * i + 1])
|
|||
|
landmarks_np[i] = np.array([point_x, point_y])
|
|||
|
|
|||
|
class_label = int(class_num) # 车牌的的类型0代表单牌,1代表双层车牌
|
|||
|
roi_img = four_point_transform(img, landmarks_np) # 透视变换得到车牌小图
|
|||
|
if class_label: # 判断是否是双层车牌,是双牌的话进行分割后然后拼接
|
|||
|
roi_img = get_split_merge(roi_img)
|
|||
|
if not is_color:
|
|||
|
plate_number, rec_prob = get_plate_result(roi_img, device, plate_rec_model, is_color=is_color) # 对车牌小图进行识别
|
|||
|
else:
|
|||
|
plate_number, rec_prob, plate_color, color_conf = get_plate_result(roi_img, device, plate_rec_model,
|
|||
|
is_color=is_color)
|
|||
|
Box['X'] = landmarks_np[0][0].tolist() # 车牌角点坐标
|
|||
|
Box['Y'] = landmarks_np[0][1].tolist()
|
|||
|
Box['Width'] = rect[2] - rect[0]
|
|||
|
Box['Height'] = rect[3] - rect[1]
|
|||
|
# Box['label'] = plate_number # 车牌号
|
|||
|
# Box['rect'] = rect
|
|||
|
result_dict['rect'] = rect # 车牌roi区域
|
|||
|
result_dict['detect_conf'] = conf # 检测区域得分
|
|||
|
result_dict['landmarks'] = landmarks_np.tolist() # 车牌角点坐标
|
|||
|
result_dict['plate_no'] = plate_number # 车牌号
|
|||
|
result_dict['rec_conf'] = rec_prob # 每个字符的概率
|
|||
|
result_dict['roi_height'] = roi_img.shape[0] # 车牌高度
|
|||
|
result_dict['plate_color'] = ""
|
|||
|
if is_color:
|
|||
|
result_dict['plate_color'] = plate_color # 车牌颜色
|
|||
|
result_dict['color_conf'] = color_conf # 颜色得分
|
|||
|
result_dict['plate_type'] = class_label # 单双层 0单层 1双层
|
|||
|
score = conf.tolist()
|
|||
|
return plate_number, score, Box, result_dict
|
|||
|
|
|||
|
|
|||
|
def detect_Recognition_plate(model, orgimg, device, plate_rec_model, img_size, is_color=False): # 获取车牌信息
|
|||
|
# Load model
|
|||
|
# img_size = opt_img_size
|
|||
|
conf_thres = 0.3 # 得分阈值
|
|||
|
iou_thres = 0.5 # nms的iou值
|
|||
|
dict_list = []
|
|||
|
result_jpg = []
|
|||
|
# orgimg = cv2.imread(image_path) # BGR
|
|||
|
img0 = copy.deepcopy(orgimg)
|
|||
|
assert orgimg is not None, 'Image Not Found '
|
|||
|
h0, w0 = orgimg.shape[:2] # orig hw
|
|||
|
r = img_size / max(h0, w0) # resize image to img_size
|
|||
|
if r != 1: # always resize down, only resize up if training with augmentation
|
|||
|
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
|
|||
|
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
|||
|
|
|||
|
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
|
|||
|
|
|||
|
img = letterbox(img0, new_shape=imgsz)[0] # 检测前处理,图片长宽变为32倍数,比如变为640X640
|
|||
|
# img =process_data(img0)
|
|||
|
# Convert
|
|||
|
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416 图片的BGR排列转为RGB,然后将图片的H,W,C排列变为C,H,W排列
|
|||
|
|
|||
|
# Run inference
|
|||
|
t0 = time.time()
|
|||
|
|
|||
|
img = torch.from_numpy(img).to(device)
|
|||
|
img = img.float() # uint8 to fp16/32
|
|||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|||
|
if img.ndimension() == 3:
|
|||
|
img = img.unsqueeze(0)
|
|||
|
|
|||
|
# Inference
|
|||
|
pred = model(img)[0]
|
|||
|
# Apply NMS
|
|||
|
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
|
|||
|
# result_jpg.insert(0, pred)
|
|||
|
# Process detections
|
|||
|
for i, det in enumerate(pred): # detections per image
|
|||
|
if len(det):
|
|||
|
# Rescale boxes from img_size to im0 size
|
|||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
|
|||
|
|
|||
|
# Print results
|
|||
|
for c in det[:, -1].unique():
|
|||
|
n = (det[:, -1] == c).sum() # detections per class
|
|||
|
|
|||
|
det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
|
|||
|
|
|||
|
for j in range(det.size()[0]):
|
|||
|
xyxy = det[j, :4].view(-1).tolist()
|
|||
|
conf = det[j, 4].cpu().numpy()
|
|||
|
landmarks = det[j, 5:13].view(-1).tolist()
|
|||
|
class_num = det[j, 13].cpu().numpy()
|
|||
|
label, score, Box, result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num,
|
|||
|
device, plate_rec_model, is_color=is_color)
|
|||
|
dict_list.append(result_dict)
|
|||
|
result_jpg.append(Box)
|
|||
|
result_jpg.append(score)
|
|||
|
result_jpg.append(label)
|
|||
|
return dict_list, result_jpg
|
|||
|
# cv2.imwrite('result.jpg', orgimg)
|
|||
|
|
|||
|
|
|||
|
def draw_result(orgimg, dict_list, is_color=False): # 车牌结果画出来
|
|||
|
result_str = ""
|
|||
|
for result in dict_list:
|
|||
|
rect_area = result['rect']
|
|||
|
|
|||
|
x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
|
|||
|
padding_w = 0.05 * w
|
|||
|
padding_h = 0.11 * h
|
|||
|
rect_area[0] = max(0, int(x - padding_w))
|
|||
|
rect_area[1] = max(0, int(y - padding_h))
|
|||
|
rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
|
|||
|
rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
|
|||
|
|
|||
|
height_area = result['roi_height']
|
|||
|
landmarks = result['landmarks']
|
|||
|
result_p = result['plate_no']
|
|||
|
if result['plate_type'] == 0: # 单层
|
|||
|
result_p += " " + result['plate_color']
|
|||
|
else: # 双层
|
|||
|
result_p += " " + result['plate_color'] + "双层"
|
|||
|
result_str += result_p + " "
|
|||
|
for i in range(4): # 关键点
|
|||
|
cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
|
|||
|
cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), (0, 0, 255), 2) # 画框
|
|||
|
|
|||
|
labelSize = cv2.getTextSize(result_p, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # 获得字体的大小
|
|||
|
if rect_area[0] + labelSize[0][0] > orgimg.shape[1]: # 防止显示的文字越界
|
|||
|
rect_area[0] = int(orgimg.shape[1] - labelSize[0][0])
|
|||
|
orgimg = cv2.rectangle(orgimg, (rect_area[0], int(rect_area[1] - round(1.6 * labelSize[0][1]))),
|
|||
|
(int(rect_area[0] + round(1.2 * labelSize[0][0])), rect_area[1] + labelSize[1]),
|
|||
|
(255, 255, 255), cv2.FILLED) # 画文字框,背景白色
|
|||
|
|
|||
|
if len(result) >= 1:
|
|||
|
orgimg = cv2ImgAddText(orgimg, result_p, rect_area[0], int(rect_area[1] - round(1.6 * labelSize[0][1])),
|
|||
|
(0, 0, 0), 21)
|
|||
|
# orgimg=cv2ImgAddText(orgimg,result_p,rect_area[0]-height_area,rect_area[1]-height_area-10,(0,255,0),height_area)
|
|||
|
|
|||
|
print(result_str) # 打印结果
|
|||
|
return orgimg, result_str
|
|||
|
|
|||
|
|
|||
|
def get_second(capture):
|
|||
|
if capture.isOpened():
|
|||
|
rate = capture.get(5) # 帧速率
|
|||
|
FrameNumber = capture.get(7) # 视频文件的帧数
|
|||
|
duration = FrameNumber / rate # 帧速率/视频总帧数 是时间,除以60之后单位是分钟
|
|||
|
return int(rate), int(FrameNumber), int(duration)
|
|||
|
|
|||
|
def process_images(detect_model_path, rec_model_path, is_color, img, img_size, output, video_path):
|
|||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|||
|
|
|||
|
# 创建保存结果的文件夹
|
|||
|
save_path = output
|
|||
|
if not os.path.exists(save_path):
|
|||
|
os.mkdir(save_path)
|
|||
|
|
|||
|
# 加载模型
|
|||
|
detect_model = load_model(detect_model_path, device)
|
|||
|
plate_rec_model = init_model(device, rec_model_path, is_color=is_color)
|
|||
|
|
|||
|
# img = cv_imread(image_path)
|
|||
|
if img.shape[-1] == 4:
|
|||
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
|||
|
dict_list, result_jpg = detect_Recognition_plate(detect_model, img, device, plate_rec_model, img_size,
|
|||
|
is_color=is_color)
|
|||
|
# ori_img = draw_result(img, dict_list)
|
|||
|
# ori_list=ori_img[0].tolist()
|
|||
|
# result_jpg.insert(0,ori_list)
|
|||
|
result_jpg.insert(0, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|||
|
return result_jpg
|
|||
|
|
|||
|
|
|||
|
app = Flask(__name__)
|
|||
|
def base64_to_image(base64_str):
|
|||
|
# 去掉base64编码中的头部信息
|
|||
|
base64_str = base64_str.split(",")[-1]
|
|||
|
# 解码base64字符串
|
|||
|
image_data = base64.b64decode(base64_str)
|
|||
|
# 转换为numpy数组
|
|||
|
nparr = np.frombuffer(image_data, np.uint8)
|
|||
|
# 解码为OpenCV格式的图片对象
|
|||
|
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
|||
|
return image
|
|||
|
|
|||
|
@app.route('/upload', methods=['POST'])
|
|||
|
def upload_image():
|
|||
|
try:
|
|||
|
# 从请求中获取base64编码的图片数据
|
|||
|
data = request.json
|
|||
|
# print(data)
|
|||
|
base64_str = data.get('image')
|
|||
|
# print(base64_str)
|
|||
|
if not base64_str:
|
|||
|
return jsonify({'error': 'No image data provided'}), 400
|
|||
|
|
|||
|
# 将base64编码转换为图片
|
|||
|
image = base64_to_image(base64_str)
|
|||
|
|
|||
|
result_jpg = process_images(
|
|||
|
detect_model_path='weights/plate_detect.pt',
|
|||
|
rec_model_path='weights/plate_rec_color.pth',
|
|||
|
is_color=True,
|
|||
|
img=image,
|
|||
|
img_size=640,
|
|||
|
output='result',
|
|||
|
video_path='' # 如果处理图片,视频路径留空
|
|||
|
)
|
|||
|
|
|||
|
# 构建一个字典来存储结果
|
|||
|
results = []
|
|||
|
|
|||
|
# 添加注册矩阵
|
|||
|
register_matrix = [
|
|||
|
[1, 0, 0],
|
|||
|
[0, 1, 0],
|
|||
|
[0, 0, 1]
|
|||
|
]
|
|||
|
results.append({"RegisterMatrix": register_matrix})
|
|||
|
|
|||
|
# 添加检测结果
|
|||
|
for i in range(1, len(result_jpg), 3):
|
|||
|
box, score, label = result_jpg[i:i + 3]
|
|||
|
box_data = box
|
|||
|
|
|||
|
detection_result = {
|
|||
|
"Box": box_data,
|
|||
|
"Score": score,
|
|||
|
"label": label
|
|||
|
}
|
|||
|
results.append(detection_result)
|
|||
|
# print(detection_result)
|
|||
|
# 返回处理结果
|
|||
|
return jsonify({"result.jpg": results})
|
|||
|
except Exception as e:
|
|||
|
# 打印异常信息以帮助诊断
|
|||
|
print(f"Caught an exception: {type(e).__name__}: {str(e)}")
|
|||
|
return jsonify({"error_msg": "Content processing is incorrect",
|
|||
|
"error_code": "AIS.0404"})
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
app.run(debug=True)
|