36 lines
1.2 KiB
Python
36 lines
1.2 KiB
Python
|
import torch
|
||
|
|
||
|
|
||
|
|
||
|
def decode_infer(output, stride):
|
||
|
# logging.info(torch.tensor(output.shape[0]))
|
||
|
# logging.info(output.shape)
|
||
|
# # bz is batch-size
|
||
|
# bz = tuple(torch.tensor(output.shape[0]))
|
||
|
# gridsize = tuple(torch.tensor(output.shape[-1]))
|
||
|
# logging.info(gridsize)
|
||
|
sh = torch.tensor(output.shape)
|
||
|
bz = sh[0]
|
||
|
gridsize = sh[-1]
|
||
|
|
||
|
output = output.permute(0, 2, 3, 1)
|
||
|
output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
|
||
|
x1y1, x2y2, conf, prob = torch.split(
|
||
|
output, [2, 2, 1, self.numclass], dim=4)
|
||
|
|
||
|
shiftx = torch.arange(0, gridsize, dtype=torch.float32)
|
||
|
shifty = torch.arange(0, gridsize, dtype=torch.float32)
|
||
|
shifty, shiftx = torch.meshgrid([shiftx, shifty])
|
||
|
shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||
|
shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
|
||
|
|
||
|
xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
|
||
|
x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
|
||
|
x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
|
||
|
|
||
|
xyxy = torch.cat((x1y1, x2y2), dim=4)
|
||
|
conf = torch.sigmoid(conf)
|
||
|
prob = torch.sigmoid(prob)
|
||
|
output = torch.cat((xyxy, conf, prob), 4)
|
||
|
output = output.view(bz, -1, 5+self.numclass)
|
||
|
return output
|