import torch from ultralytics import YOLO # 加载预训练的模型 model = YOLO('weights/plate_detect.pt') # 设置图像路径 image_path = r'D:\Project\ChePai\test\images\val\20230331163841.jpg' # 进行推理 results = model(image_path) # 解析结果 for r in results: boxes = r.boxes # 包含检测结果的Boxes对象 # 获取边界框坐标 box_coordinates = boxes.xyxy.cpu().numpy() # 获取置信度分数 confidences = boxes.conf.cpu().numpy() # 获取类别标签 labels = boxes.cls.cpu().numpy().astype(int) # 打印检测结果 for i in range(len(box_coordinates)): x1, y1, x2, y2 = box_coordinates[i] confidence = confidences[i] label = model.names[labels[i]] print(f'Object: {label}, Confidence: {confidence:.2f}, Bounding Box: ({x1:.2f}, {y1:.2f}, {x2:.2f}, {y2:.2f})')