# Loss functions import torch import torch.nn as nn import numpy as np from utils.general import bbox_iou from utils.torch_utils import is_parallel def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super(BCEBlurWithLogitsLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(QFocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class WingLoss(nn.Module): def __init__(self, w=10, e=2): super(WingLoss, self).__init__() # https://arxiv.org/pdf/1711.06753v4.pdf Figure 5 self.w = w self.e = e self.C = self.w - self.w * np.log(1 + self.w / self.e) def forward(self, x, t, sigma=1): weight = torch.ones_like(t) weight[torch.where(t==-1)] = 0 diff = weight * (x - t) abs_diff = diff.abs() flag = (abs_diff.data < self.w).float() y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C) return y.sum() class LandmarksLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=1.0): super(LandmarksLoss, self).__init__() self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum') self.alpha = alpha def forward(self, pred, truel, mask): loss = self.loss_fcn(pred*mask, truel*mask) return loss / (torch.sum(mask) + 10e-14) def compute_loss(p, targets, model): # predictions, targets, model device = targets.device lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) landmarks_loss = LandmarksLoss(1.0) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 cp, cn = smooth_BCE(eps=0.0) # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) # Losses nt = 0 # number of targets no = len(p) # number of outputs balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6 for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: nt += n # cumulative targets ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression pxy = ps[:, :2].sigmoid() * 2. - 0.5 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss # Objectness tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio # Classification if model.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 13:], cn, device=device) # targets t[range(n), tcls[i]] = cp lcls += BCEcls(ps[:, 13:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] #landmarks loss #plandmarks = ps[:,5:13].sigmoid() * 8. - 4. plandmarks = ps[:,5:13] plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i] plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i] plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i] plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i] # plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i] lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i]) lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss s = 3 / no # output count scaling lbox *= h['box'] * s lobj *= h['obj'] * s * (1.4 if no == 4 else 1.) lcls *= h['cls'] * s lmark *= h['landmark'] * s bs = tobj.shape[0] # batch size loss = lbox + lobj + lcls + lmark return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach() def build_targets(p, targets, model): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module na, nt = det.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], [] #gain = torch.ones(7, device=targets.device) # normalized to gridspace gain gain = torch.ones(15, device=targets.device) ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(det.nl): anchors, shape = det.anchors[i], p[i].shape gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain #landmarks 10 gain[6:14] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 14].long() # anchor indices #indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class #landmarks lks = t[:,6:14] #lks_mask = lks > 0 #lks_mask = lks_mask.float() lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) #应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准 lks[:, [0, 1]] = (lks[:, [0, 1]] - gij) lks[:, [2, 3]] = (lks[:, [2, 3]] - gij) lks[:, [4, 5]] = (lks[:, [4, 5]] - gij) lks[:, [6, 7]] = (lks[:, [6, 7]] - gij) # lks[:, [8, 9]] = (lks[:, [8, 9]] - gij) ''' #anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0]) #anch_wh = torch.ones(5, device=targets.device) anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5) anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5) anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5) lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]]) lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]]) lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]]) lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]]) lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]]) lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]]) #new_lks = lks[lks_mask>0] #print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks)) lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0)) lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2 lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1] lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1] lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3] lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3] lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5] lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5] lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7] lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7] lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9] lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9] ''' lks_mask_new = lks_mask lmks_mask.append(lks_mask_new) landmarks.append(lks) #print('lks: ', lks.size()) return tcls, tbox, indices, anch, landmarks, lmks_mask