36 lines
1.7 KiB
YAML
36 lines
1.7 KiB
YAML
# COCO 2017 dataset http://cocodataset.org
|
|
# Train command: python train.py --data coco.yaml
|
|
# Default dataset location is next to /yolov5:
|
|
# /parent_folder
|
|
# /coco
|
|
# /yolov5
|
|
|
|
|
|
# download command/URL (optional)
|
|
download: bash data/scripts/get_coco.sh
|
|
|
|
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
|
train: ../coco/train2017.txt # 118287 images
|
|
val: ../coco/val2017.txt # 5000 images
|
|
test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
|
|
|
# number of classes
|
|
nc: 80
|
|
|
|
# class names
|
|
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
|
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
|
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
|
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
|
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
|
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
|
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
|
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
|
'hair drier', 'toothbrush' ]
|
|
|
|
# Print classes
|
|
# with open('data/coco.yaml') as f:
|
|
# d = yaml.load(f, Loader=yaml.FullLoader) # dict
|
|
# for i, x in enumerate(d['names']):
|
|
# print(i, x)
|