177 lines
6.5 KiB
Python
177 lines
6.5 KiB
Python
import os.path
|
|
import sys
|
|
import torch
|
|
import torch.utils.data as data
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
class WiderFaceDetection(data.Dataset):
|
|
def __init__(self, txt_path, preproc=None):
|
|
self.preproc = preproc
|
|
self.imgs_path = []
|
|
self.words = []
|
|
f = open(txt_path, 'r')
|
|
lines = f.readlines()
|
|
isFirst = True
|
|
labels = []
|
|
for line in lines:
|
|
line = line.rstrip()
|
|
if line.startswith('#'):
|
|
if isFirst is True:
|
|
isFirst = False
|
|
else:
|
|
labels_copy = labels.copy()
|
|
self.words.append(labels_copy)
|
|
labels.clear()
|
|
path = line[2:]
|
|
path = txt_path.replace('label.txt', 'images/') + path
|
|
self.imgs_path.append(path)
|
|
else:
|
|
line = line.split(' ')
|
|
label = [float(x) for x in line]
|
|
labels.append(label)
|
|
|
|
self.words.append(labels)
|
|
|
|
def __len__(self):
|
|
return len(self.imgs_path)
|
|
|
|
def __getitem__(self, index):
|
|
img = cv2.imread(self.imgs_path[index])
|
|
height, width, _ = img.shape
|
|
|
|
labels = self.words[index]
|
|
annotations = np.zeros((0, 15))
|
|
if len(labels) == 0:
|
|
return annotations
|
|
for idx, label in enumerate(labels):
|
|
annotation = np.zeros((1, 15))
|
|
# bbox
|
|
annotation[0, 0] = label[0] # x1
|
|
annotation[0, 1] = label[1] # y1
|
|
annotation[0, 2] = label[0] + label[2] # x2
|
|
annotation[0, 3] = label[1] + label[3] # y2
|
|
|
|
# landmarks
|
|
annotation[0, 4] = label[4] # l0_x
|
|
annotation[0, 5] = label[5] # l0_y
|
|
annotation[0, 6] = label[7] # l1_x
|
|
annotation[0, 7] = label[8] # l1_y
|
|
annotation[0, 8] = label[10] # l2_x
|
|
annotation[0, 9] = label[11] # l2_y
|
|
annotation[0, 10] = label[13] # l3_x
|
|
annotation[0, 11] = label[14] # l3_y
|
|
annotation[0, 12] = label[16] # l4_x
|
|
annotation[0, 13] = label[17] # l4_y
|
|
if annotation[0, 4] < 0:
|
|
annotation[0, 14] = -1
|
|
else:
|
|
annotation[0, 14] = 1
|
|
|
|
annotations = np.append(annotations, annotation, axis=0)
|
|
target = np.array(annotations)
|
|
if self.preproc is not None:
|
|
img, target = self.preproc(img, target)
|
|
|
|
return torch.from_numpy(img), target
|
|
|
|
|
|
def detection_collate(batch):
|
|
"""Custom collate fn for dealing with batches of images that have a different
|
|
number of associated object annotations (bounding boxes).
|
|
|
|
Arguments:
|
|
batch: (tuple) A tuple of tensor images and lists of annotations
|
|
|
|
Return:
|
|
A tuple containing:
|
|
1) (tensor) batch of images stacked on their 0 dim
|
|
2) (list of tensors) annotations for a given image are stacked on 0 dim
|
|
"""
|
|
targets = []
|
|
imgs = []
|
|
for _, sample in enumerate(batch):
|
|
for _, tup in enumerate(sample):
|
|
if torch.is_tensor(tup):
|
|
imgs.append(tup)
|
|
elif isinstance(tup, type(np.empty(0))):
|
|
annos = torch.from_numpy(tup).float()
|
|
targets.append(annos)
|
|
|
|
return torch.stack(imgs, 0), targets
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if len(sys.argv) == 1:
|
|
print('Missing path to WIDERFACE train folder.')
|
|
print('Run command: python3 train2yolo.py /path/to/original/widerface/train [/path/to/save/widerface/train]')
|
|
exit(1)
|
|
elif len(sys.argv) > 3:
|
|
print('Too many arguments were provided.')
|
|
print('Run command: python3 train2yolo.py /path/to/original/widerface/train [/path/to/save/widerface/train]')
|
|
exit(1)
|
|
original_path = sys.argv[1]
|
|
|
|
if len(sys.argv) == 2:
|
|
if not os.path.isdir('widerface'):
|
|
os.mkdir('widerface')
|
|
if not os.path.isdir('widerface/train'):
|
|
os.mkdir('widerface/train')
|
|
|
|
save_path = 'widerface/train'
|
|
else:
|
|
save_path = sys.argv[2]
|
|
|
|
if not os.path.isfile(os.path.join(original_path, 'label.txt')):
|
|
print('Missing label.txt file.')
|
|
exit(1)
|
|
|
|
aa = WiderFaceDetection(os.path.join(original_path, 'label.txt'))
|
|
|
|
for i in range(len(aa.imgs_path)):
|
|
print(i, aa.imgs_path[i])
|
|
img = cv2.imread(aa.imgs_path[i])
|
|
base_img = os.path.basename(aa.imgs_path[i])
|
|
base_txt = os.path.basename(aa.imgs_path[i])[:-4] + ".txt"
|
|
save_img_path = os.path.join(save_path, base_img)
|
|
save_txt_path = os.path.join(save_path, base_txt)
|
|
with open(save_txt_path, "w") as f:
|
|
height, width, _ = img.shape
|
|
labels = aa.words[i]
|
|
annotations = np.zeros((0, 14))
|
|
if len(labels) == 0:
|
|
continue
|
|
for idx, label in enumerate(labels):
|
|
annotation = np.zeros((1, 14))
|
|
# bbox
|
|
label[0] = max(0, label[0])
|
|
label[1] = max(0, label[1])
|
|
label[2] = min(width - 1, label[2])
|
|
label[3] = min(height - 1, label[3])
|
|
annotation[0, 0] = (label[0] + label[2] / 2) / width # cx
|
|
annotation[0, 1] = (label[1] + label[3] / 2) / height # cy
|
|
annotation[0, 2] = label[2] / width # w
|
|
annotation[0, 3] = label[3] / height # h
|
|
#if (label[2] -label[0]) < 8 or (label[3] - label[1]) < 8:
|
|
# img[int(label[1]):int(label[3]), int(label[0]):int(label[2])] = 127
|
|
# continue
|
|
# landmarks
|
|
annotation[0, 4] = label[4] / width # l0_x
|
|
annotation[0, 5] = label[5] / height # l0_y
|
|
annotation[0, 6] = label[7] / width # l1_x
|
|
annotation[0, 7] = label[8] / height # l1_y
|
|
annotation[0, 8] = label[10] / width # l2_x
|
|
annotation[0, 9] = label[11] / height # l2_y
|
|
annotation[0, 10] = label[13] / width # l3_x
|
|
annotation[0, 11] = label[14] / height # l3_y
|
|
annotation[0, 12] = label[16] / width # l4_x
|
|
annotation[0, 13] = label[17] / height # l4_yca
|
|
str_label = "0 "
|
|
for i in range(len(annotation[0])):
|
|
str_label = str_label + " " + str(annotation[0][i])
|
|
str_label = str_label.replace('[', '').replace(']', '')
|
|
str_label = str_label.replace(',', '') + '\n'
|
|
f.write(str_label)
|
|
cv2.imwrite(save_img_path, img)
|