307 lines
16 KiB
Python
307 lines
16 KiB
Python
import json
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import yaml
|
|
from tqdm import tqdm
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
|
|
from utils.datasets import LoadImagesAndLabels
|
|
from utils.datasets import img2label_paths
|
|
from utils.general import colorstr, xywh2xyxy, check_dataset
|
|
|
|
try:
|
|
import wandb
|
|
from wandb import init, finish
|
|
except ImportError:
|
|
wandb = None
|
|
|
|
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
|
|
|
|
|
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
|
return from_string[len(prefix):]
|
|
|
|
|
|
def check_wandb_config_file(data_config_file):
|
|
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
|
if Path(wandb_config).is_file():
|
|
return wandb_config
|
|
return data_config_file
|
|
|
|
|
|
def get_run_info(run_path):
|
|
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
|
run_id = run_path.stem
|
|
project = run_path.parent.stem
|
|
model_artifact_name = 'run_' + run_id + '_model'
|
|
return run_id, project, model_artifact_name
|
|
|
|
|
|
def check_wandb_resume(opt):
|
|
process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
|
|
if isinstance(opt.resume, str):
|
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
|
if opt.global_rank not in [-1, 0]: # For resuming DDP runs
|
|
run_id, project, model_artifact_name = get_run_info(opt.resume)
|
|
api = wandb.Api()
|
|
artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
|
|
modeldir = artifact.download()
|
|
opt.weights = str(Path(modeldir) / "last.pt")
|
|
return True
|
|
return None
|
|
|
|
|
|
def process_wandb_config_ddp_mode(opt):
|
|
with open(opt.data) as f:
|
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
|
train_dir, val_dir = None, None
|
|
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
|
api = wandb.Api()
|
|
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
|
train_dir = train_artifact.download()
|
|
train_path = Path(train_dir) / 'data/images/'
|
|
data_dict['train'] = str(train_path)
|
|
|
|
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
|
api = wandb.Api()
|
|
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
|
val_dir = val_artifact.download()
|
|
val_path = Path(val_dir) / 'data/images/'
|
|
data_dict['val'] = str(val_path)
|
|
if train_dir or val_dir:
|
|
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
|
with open(ddp_data_path, 'w') as f:
|
|
yaml.dump(data_dict, f)
|
|
opt.data = ddp_data_path
|
|
|
|
|
|
class WandbLogger():
|
|
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
|
|
# Pre-training routine --
|
|
self.job_type = job_type
|
|
self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
|
|
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
|
|
if isinstance(opt.resume, str): # checks resume from artifact
|
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
|
run_id, project, model_artifact_name = get_run_info(opt.resume)
|
|
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
|
assert wandb, 'install wandb to resume wandb runs'
|
|
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
|
self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
|
|
opt.resume = model_artifact_name
|
|
elif self.wandb:
|
|
self.wandb_run = wandb.init(config=opt,
|
|
resume="allow",
|
|
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
|
name=name,
|
|
job_type=job_type,
|
|
id=run_id) if not wandb.run else wandb.run
|
|
if self.wandb_run:
|
|
if self.job_type == 'Training':
|
|
if not opt.resume:
|
|
wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
|
|
# Info useful for resuming from artifacts
|
|
self.wandb_run.config.opt = vars(opt)
|
|
self.wandb_run.config.data_dict = wandb_data_dict
|
|
self.data_dict = self.setup_training(opt, data_dict)
|
|
if self.job_type == 'Dataset Creation':
|
|
self.data_dict = self.check_and_upload_dataset(opt)
|
|
else:
|
|
prefix = colorstr('wandb: ')
|
|
print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
|
|
|
|
def check_and_upload_dataset(self, opt):
|
|
assert wandb, 'Install wandb to upload dataset'
|
|
check_dataset(self.data_dict)
|
|
config_path = self.log_dataset_artifact(opt.data,
|
|
opt.single_cls,
|
|
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
|
print("Created dataset config file ", config_path)
|
|
with open(config_path) as f:
|
|
wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
|
|
return wandb_data_dict
|
|
|
|
def setup_training(self, opt, data_dict):
|
|
self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
|
|
self.bbox_interval = opt.bbox_interval
|
|
if isinstance(opt.resume, str):
|
|
modeldir, _ = self.download_model_artifact(opt)
|
|
if modeldir:
|
|
self.weights = Path(modeldir) / "last.pt"
|
|
config = self.wandb_run.config
|
|
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
|
self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
|
|
config.opt['hyp']
|
|
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
|
|
if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
|
|
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
|
opt.artifact_alias)
|
|
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
|
|
opt.artifact_alias)
|
|
self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
|
|
if self.train_artifact_path is not None:
|
|
train_path = Path(self.train_artifact_path) / 'data/images/'
|
|
data_dict['train'] = str(train_path)
|
|
if self.val_artifact_path is not None:
|
|
val_path = Path(self.val_artifact_path) / 'data/images/'
|
|
data_dict['val'] = str(val_path)
|
|
self.val_table = self.val_artifact.get("val")
|
|
self.map_val_table_path()
|
|
if self.val_artifact is not None:
|
|
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
|
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
|
|
if opt.bbox_interval == -1:
|
|
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
|
return data_dict
|
|
|
|
def download_dataset_artifact(self, path, alias):
|
|
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
|
dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
|
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
|
datadir = dataset_artifact.download()
|
|
return datadir, dataset_artifact
|
|
return None, None
|
|
|
|
def download_model_artifact(self, opt):
|
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
|
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
|
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
|
modeldir = model_artifact.download()
|
|
epochs_trained = model_artifact.metadata.get('epochs_trained')
|
|
total_epochs = model_artifact.metadata.get('total_epochs')
|
|
assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
|
|
total_epochs)
|
|
return modeldir, model_artifact
|
|
return None, None
|
|
|
|
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
|
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
|
'original_url': str(path),
|
|
'epochs_trained': epoch + 1,
|
|
'save period': opt.save_period,
|
|
'project': opt.project,
|
|
'total_epochs': opt.epochs,
|
|
'fitness_score': fitness_score
|
|
})
|
|
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
|
wandb.log_artifact(model_artifact,
|
|
aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
|
print("Saving model artifact on epoch ", epoch + 1)
|
|
|
|
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
|
with open(data_file) as f:
|
|
data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
|
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
|
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
|
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
|
data['train']), names, name='train') if data.get('train') else None
|
|
self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
|
data['val']), names, name='val') if data.get('val') else None
|
|
if data.get('train'):
|
|
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
|
if data.get('val'):
|
|
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
|
path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
|
|
data.pop('download', None)
|
|
with open(path, 'w') as f:
|
|
yaml.dump(data, f)
|
|
|
|
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
|
self.wandb_run.use_artifact(self.val_artifact)
|
|
self.wandb_run.use_artifact(self.train_artifact)
|
|
self.val_artifact.wait()
|
|
self.val_table = self.val_artifact.get('val')
|
|
self.map_val_table_path()
|
|
else:
|
|
self.wandb_run.log_artifact(self.train_artifact)
|
|
self.wandb_run.log_artifact(self.val_artifact)
|
|
return path
|
|
|
|
def map_val_table_path(self):
|
|
self.val_table_map = {}
|
|
print("Mapping dataset")
|
|
for i, data in enumerate(tqdm(self.val_table.data)):
|
|
self.val_table_map[data[3]] = data[0]
|
|
|
|
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
|
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
|
artifact = wandb.Artifact(name=name, type="dataset")
|
|
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
|
img_files = tqdm(dataset.img_files) if not img_files else img_files
|
|
for img_file in img_files:
|
|
if Path(img_file).is_dir():
|
|
artifact.add_dir(img_file, name='data/images')
|
|
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
|
artifact.add_dir(labels_path, name='data/labels')
|
|
else:
|
|
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
|
label_file = Path(img2label_paths([img_file])[0])
|
|
artifact.add_file(str(label_file),
|
|
name='data/labels/' + label_file.name) if label_file.exists() else None
|
|
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
|
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
|
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
|
height, width = shapes[0]
|
|
labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
|
|
box_data, img_classes = [], {}
|
|
for cls, *xyxy in labels[:, 1:].tolist():
|
|
cls = int(cls)
|
|
box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
|
"class_id": cls,
|
|
"box_caption": "%s" % (class_to_id[cls]),
|
|
"scores": {"acc": 1},
|
|
"domain": "pixel"})
|
|
img_classes[cls] = class_to_id[cls]
|
|
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
|
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
|
|
Path(paths).name)
|
|
artifact.add(table, name)
|
|
return artifact
|
|
|
|
def log_training_progress(self, predn, path, names):
|
|
if self.val_table and self.result_table:
|
|
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
|
box_data = []
|
|
total_conf = 0
|
|
for *xyxy, conf, cls in predn.tolist():
|
|
if conf >= 0.25:
|
|
box_data.append(
|
|
{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
|
"class_id": int(cls),
|
|
"box_caption": "%s %.3f" % (names[cls], conf),
|
|
"scores": {"class_score": conf},
|
|
"domain": "pixel"})
|
|
total_conf = total_conf + conf
|
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
|
id = self.val_table_map[Path(path).name]
|
|
self.result_table.add_data(self.current_epoch,
|
|
id,
|
|
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
|
total_conf / max(1, len(box_data))
|
|
)
|
|
|
|
def log(self, log_dict):
|
|
if self.wandb_run:
|
|
for key, value in log_dict.items():
|
|
self.log_dict[key] = value
|
|
|
|
def end_epoch(self, best_result=False):
|
|
if self.wandb_run:
|
|
wandb.log(self.log_dict)
|
|
self.log_dict = {}
|
|
if self.result_artifact:
|
|
train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
|
|
self.result_artifact.add(train_results, 'result')
|
|
wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
|
|
('best' if best_result else '')])
|
|
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
|
|
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
|
|
|
def finish_run(self):
|
|
if self.wandb_run:
|
|
if self.log_dict:
|
|
wandb.log(self.log_dict)
|
|
wandb.run.finish()
|